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ABSTRACT

AL Hamed, Omama, Project : June : 2023, Bachelor in Statistics

Title: Real-time statistical learning with application to fetal well-being monitoring and

real-estate value prediction in Qatar

Supervisor of Project: Dr. Mohamed Chaouch.

Predictive models, including supervised/unsupervised clustering and time series

forecasting, represent powerful data science tools that help in taking decisions in different

fields such as in medicine, finance and business. Nowadays with the progress in the

technology of electronic devises, we have an easy access to structured and unstructured

data (e.g. numeric, image, video, text, . . . ). Storing such massive amount of data

and analyze them in real time is one of the most challenging topics in data science.

In this project, we introduce a nonparametric predictive model that allows to classify

objects or predict unknown values while either a big data set is at our disposal or data

is received in streaming. The quality of the proposed predictor/classifier in terms of

accuracy and computation time reduction is assessed through simulated data. Moreover,

application to real-time monitoring of fetal well-being during pregnancy is discussed

using cardiotocography data. Then the proposed methodology is also applied for real-

time dates data classification which could be of great interest in food-quality monitoring.

Finally, a third application is considered for an online prediction of real estate value in

Qatar.
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CHAPTER 1: INTRODUCTION

Problem statement

Studying the relationship between variables is a common concern in the field

of statistics. Exploring/understanding their associations is essential for making conclu-

sions about the variables of interest in the presence of other variables. Hence, there

is a wide range of statistical techniques that were developed for the aim of building

predictive models. In general, these models fall into three main categories: Parametric,

Non-Parametric and Semi-Parametric. They differ by the assumptions imposed on the

data. The parametric methods, in general, make specific assumptions on the under-

lying distribution of the data, and they assume a specific shape of the link function.

Although the parametric models are the most powerful in prediction, their results may

be misleading or inaccurate if their assumptions are not met. On the other hand, the

non-parametric models relax these assumptions and hence are more flexible and less

restrictive. However, there are certain issues regarding the usage of the non-parametric

models. For example, obtaining good results by these models requires a larger set of

training data, and training the models takes a great deal of time. This project aims to dis-

cuss non-parametric estimators that provide reasonably accurate results with minimum

time cost.

Project outline

In Chapter 2, we begin with a quick overview of the parametric regression

models. Then, we move to the offline non-parametric regression estimation. Chapter

3 focuses on dealing with large datasets where reducing the computation time becomes

necessary. The recursive online estimator is introduced, and then we compare its
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performance with an offline estimator. Then, in Chapter 4, we explain the adaptation of

these two estimators to the case of supervised learning. Finally, chapter 5 presents some

applications with real data. The results include some comparisons between different

parametric and non-parametric estimators in terms of accuracy and calculation time.

Contribution of the Project

This project introduces real-time predictive models when big data set is available

or data are received in streaming. We adapt the Robbins-Monro estimator to the super-

vised statistical learning problem. A comparison between the offline Nadaraya-Watson

estimator and the proposed estimator is considered to assess the consistency as well as

the computation time efficiency. Several applications are considered in this project. The

first one is medical which consists in real-time monitoring of fetal well-being during

pregnancy. Given a certain number of medical measures, the proposed model allows to

assist the doctor to decide whether the fetal state is normal, suspicious or pathological.

The second application, aims to predict the class of dates in real-time given some di-

mension/size/shape, color and texture predictors. This application is of great interest in

food-quality assessment. Finally, we apply the proposed Robbins-Monro estimator to

predict the value of real estate in Qatar in real-time.
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CHAPTER 2: OFFLINE REGRESSION ESTIMATION

Regression models aim to study the relationship between one variable of interest,

say Y , and other explanatory variables called predictors. In practice, it is very important

to understand how these variables are concomitant. Building such models allows us to

understand/explain the existing dynamic in the relationship between the variables and

allows to predict the unknown variable Y given specific values of the predictors. In the

statistical literature, authors were interested in investigating several regression models.

One finds three families of models: (1) parametric models, (2) nonparametric models,

and (3) semi-parametric models.

Linear regression models belong to the family of parametric models and aim to

explain the impact of the explanatory variables (predictors) on the variable of interest Y

assuming a linear relationship. Moreover, in order to be able to estimate the parameters,

on which depend the model, and study their properties, one needs to consider some

specific probabilistic distribution on the variable Y. These two conditions are, in general,

very difficult to be satisfied when we deal with real data. Nonparametric models came

to relax the shape constraint assumed in linear models on the function linking Y to the

predictors and do not necessarily assume that the data is generated according to a specific

probabilistic distribution. Finally, semiparametric models can be seen as a combination

of parametric and nonparametric approaches. They are designed to get the benefits from

parametric approaches as well as those from the nonparametric ones. In the following

sections, we will first give a brief review of linear regression models. Then, we discuss

nonparametric kernel-type estimation of the regression function.
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Linear regression model

Linear regression analysis is a statistical approach that seeks to fit a model

that predicts a response variable. The aim is to find the smallest set of predictors

that explain most of the variability in the response. To formulate mathematically the

problem, let us denote (X1, . . . , Xp) ∈ Rp be a p-dimensional vector of predictors that

are concomitant with a real-valued response variable Y ∈ R. We consider the following

linear relationship between X and Y :

Y = β0 + β1X1 + · · ·+ βpXp + ϵ, (2.1)

where β := (β0, β1, . . . , βp)
⊤ is a vector of unknown parameters defining

the model in (2.1). The purpose here is to estimate the (p + 1) regression coeffi-

cients given an independent and identically distributed (i.i.d.) random sample, say

{(Xi1, . . . , Xip, Yi) : i = 1, . . . , n} generated according to the following linear model:

Yi = β0 + β1Xi1 + · · ·+ βpXip + ϵi, i = 1, . . . , n, (2.2)

where

Yi is the i-th observation of the variable Y

Xij is the i-th observation of the j-th predictor Xj

ϵi is the error term in the model. It includes the missing information that might

explain linearly the values Yi after considering (Xij)j=1,...,p in the model.

Let us now formulate the problem using matrix notations:
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Definition 1. The linear model in (2.2) can be written as follows:

Y = Xβ + ϵ, (2.3)

where

Y =



Y1

Y2

...

Yn


, X =



1 X11 X12 . . . X1p

1 X21 X22 . . . X2p

...
...

... . . .
...

1 Xn1 Xn2 . . . Xnp


≡



X⊤
1

X⊤
2

...

X⊤
n


β =



β0

β1

...

βp


and ϵ =



ϵ1

ϵ2

...

ϵn


The estimation of the parameters in (2.3) are usually estimated based on the

minimization of the errors. For this we use a loss function that considers the “global”

errors of the model. There are several loss functions in the literature. Here we focus on

the symmetric and quadratic loss function leading to the so-called Least Squared (LS)

estimator of β.

Let us now state the Gauss-Markov assumptions under which the LS estimator

achieves some relevant properties, such as unbiasedness, BLUE, and allow to determine

the asymptotic distribution of the estimator. The last result is of great interest since

it represents the masterpiece in building confidence intervals as well as performing

hypothesis testing procedure.

Assumptions:

(A1) No perfect collinearity: the matrix X is of full rank.

(A2) Zero mean: E(ϵ) = 0.

(A3) Homoscedasticity: var(ϵ) = σ2
ϵIn.
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(A4) Normality: ϵ ∼ N (0, σ2
ϵIn) .

Definition 2. (LS estimator)

Under assumption (A1), the LS estimator, say β̂n =
(
β̂0,n, β̂1,n, . . . , β̂p,n

)⊤
, of

the true regression coefficients β̃ := arg min
β∈Rp+1

E
[
(Y − β0 − β1X1 − · · · − βpXp)

2] is

defined as

β̂n = arg min
β∈Rp+1

n∑
i=1

(Yi − (β0 + β1Xi1 + · · ·+ βpXip))
2

= arg min
β∈Rp+1

∥Y −Xβ∥22, (2.4)

where ∥.∥2 denotes the Euclidean norm.

Remark 1. Note that assumption (A1), which supposes that the matrix X is of full

rank, guarantees the existence of the inverse of the matrix X⊤X where X⊤ denotes the

transpose of the matrix X. Therefore, the estimator β̂n exists and is unique.

By taking the first derivative of ∥Y −Xβ∥22 with respect to (w.r.t.) β, one can

easily deduce that β̂n is the zero of the following estimating equation

X⊤ (Y −Xβ) = 0.

Consequently, one deduces that

β̂n =
(
X⊤X

)−1
X⊤Y. (2.5)

Proposition 1. (Asymptotic properties of β̂n)

Suppose that assumptions (A1)-(A4) hold true. Then, one gets
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1. The LS estimator β̂n is unbiased. That is E(β̂n) = β̃.

2. The variance-covariance matrix of β̂n is var(β̂n) = σ2
ϵ E

[(
X⊤X

)−1
]
=: Σ.

3. β̂n has the minimal variance among all linear unbiased estimators. Therefore, it

is BLUE (Best Linear Unbiased Estimator) of β̃.

4. β̂n ∼ N
(
β̃,Σ

)
.

Despite its simplicity, the Least Squared estimator suffers of several drawbacks

among which one can cite, for instance, the sensitivity of the estimator to the existence of

outliers. Alternatives to the LS approaches were considered in the literature. A class of

robust regression models, which considers loss functions less sensitive to the presence

of outliers in the data, were investigated in the literature. Among which one cites for

instance the LAD (Least Absolute Deviation) (see the book of Huber ...)

In practice one may have several predictors (p >> n). The identification of

the most relevant predictor that explains the variability in the response variable Y is of

great importance. In such cases reducing the dimensionality of the space of predictors,

using approaches such as stepwise selection, AIC or BIC criterion became one of the

most important steps in linear regression analysis. Unfortunately, these techniques

are in general not very efficient. However, approaches such as LASSO (least absolute

shrinkage and selection operator) represent an interesting alternative to the LS approach.

Offline nonparametric estimation

Inferential statistics are generally classified into parametric and non-parametric

techniques. Their aim is to use random samples to infer the properties of the populations,

and to explore the relationships between variables. The parametric models rely on

7



making many assumptions about the underlying distributions of the data. Hence, the

nature of the population parameters and their number are known in advance. For

example, if it is assumed that the data are collected from a normal population, then we

know that the only parameters that need to be estimated are µ and σ. However, the

non-parametric approach is distribution-free and makes as few assumptions as possible.

Let X := (X1, . . . , Xp) be a vector of independent random variables and consider Y as

the dependent variable. In practice scientists are always interested in understanding how

X and Y are concomitant. Modeling the relationship between the response variable

and the predictor is one of the most studied topics in the literature. Let us consider the

following regression model:

Y = m(X) + ϵ, (2.6)

where ϵ represents the error term satisfying E(ϵ|X) = 0 and m(·) the unknown

regression function. The purpose is to estimate the regression function based on

(X1, Y1), . . . , (Xn, Yn) an i.i.d random sample distributed as (X, Y ).

In a nonparameteric setting, we do not put any shape constraint on the form of

m. The idea is to let the data talk about itself to estimate the form of the regression

function. Note that the elimination of restrictions on the shape of m allows unlimited

possibilities for the unknown functions. Moreover, observe that no prior probability

distribution is assumed for the error terms.

Under the assumption that E(ϵ|X) = 0, and taking the conditional expectation
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in both sides of equation (2.6), one can easily show that, for X = x, one has

m(x) = E(Y | X = x)

=

∫
yfY |X(y|x)dy, (2.7)

where fY |X(y|x) denotes the conditional probability density function of Y given X = x.

A plug-in estimator of the regression function could be obtained by replacing

fY |X by its estimator. This leads us to first focus, in the following section, on the

nonparametric estimation of the probability density function of a univariate random

variable X. Note that the results discussed below for the univariate case could easily be

extended to multivariate random variables.

Kernel density estimation

When studying random variables, it is more likely that their true distributions are

unknown. However, there are several techniques devoted for the purpose of estimating

these distributions. One way of understanding a random variable is by the identification

of its density function. The graphical representation of the density function conveys an

impression of the spread of a random variable and its features, which also gives a glimpse

of the most and least likely situations. Additionally, making further exploration of a

random variable requires knowing its density function. For example, some calculations

cannot be carried out without the mathematical expression of the density, such as the

expectation, variance, skewness, etc.

Density estimation refers to a set of statistical inference techniques used to draw

conclusions about the population of the variable of interest. These techniques make use

of random samples in different ways in order to draw insights about the population of

9



the data. In this section we focus on a non-parametric approach known as the kernel

density estimator.

Let X be a random variable (r.v) with a cumulative distribution function (C.D.F.)

F : R −→ (0, 1) defined by x 7→ F (x) = P(X ≤ x). Let f be the probability density

function (p.d.f) of a random variable X . We know that F ′(x) =
dF (x)

dx
= f(x), for

any x ∈ R. More explicitly,

f(x) = lim
h→0

F (x+ h)− F (x− h)

2h
= lim

h→0

1

2h
P(x− h ≤ X ≤ x+ h)

= lim
h→0

1

2h
P
(
−1 ≤ X − x

h
≤ 1

)

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) copies of X

with the same probability distribution F . Then, for h := hn(X1, . . . , Xn) small enough,

a naive estimator of f , at a fixed point x, could be defined as:

f̂n,0(x;h) :=
1

2nh

n∑
i=1

1l{−1≤Xi−x

h
≤1}. (2.8)

Due to the indicator function in 2.8, there is a lack of smoothness in this estimator,

and its derivative is undefined. From a practical point of view, most of the densities

are smooth functions. Therefore, it is better to replace the indicator function in (2.8)

with a smooth function, commonly in the literature by the kernel, and denoted K.

Theoretically, considering a smooth version of the estimator (2.8) would lead to a better

consistency rate, bias and variance reduction, without imposing heavy constraints on

the kernel K. Additionally, note that only observations in the neighborhood of x will

effectively contribute to the estimation of the density at the point x. Therefore, a
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kernel-type estimator of the density, at a fixed point x, is defined as follows:

f̂n(x;h) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
, (2.9)

where K is the kernel and h := hn is a sequence of positive real numbers tending to

zero as n goes to infinity, known as the bandwidth. Note that, in contrast to f̂n,0, the

estimator in (2.9) uses all the data in the sample. Closer the observation Xi to the fixed

point x, higher will be its contribution in calculating the value of f̂n(x;h).

Let us now compare the performance of f̂n,0 and f̂n based on some simulated

data. Let X1, . . . , Xn be an i.i.d. random sample generated according to:

model 1: Xi ∼ N (0, 1) for i = 1, . . . , n.

model 2: Xi ∼ Beta(2, 3.5) for i = 1, . . . , n.

One can see that f̂n depends on two tuning parameters: the kernel K and the bandwidth

hn. The quality of the estimation will depend on the choice of these two parameters.

In the following we are interested in discussing the effect of the choice of K and h

on the estimation of the density function under model 1 and model 2. To assess the

performance of each estimator, we consider the commonly used Integrated Square Error

ISE defined as:

ISE(f̃) =

∫ (
f̃(x)− f(x)

)2

dx, (2.10)

where f̃ denotes one of the estimators of the density (f̂n,0 and f̂n) and f is the true

density under model 1 or model 2. In practice, we use the Riemann approximation to

evaluate the integral in (2.10). For this, we consider a grid of values of x of length 500

taken from support of the density f .

(a) Comparison between Naive and Smooth estimator

11



We consider K(u) = 1√
2π
e−u2/2, h = 0.3 fixed, and n = 500.

Figure 2.1 displays the true density function under model 1, f̂n,0 and f̂n. It

can be seen that the smooth estimator fits better the true density than the unsmooth

one. In addition, by comparing the ISE values, f̂n has a better performance in terms

of minimizing the estimation error. Indeed, for model 1, ISE(f̂n,0) = 0.0003 (resp.

1.0248 for model 2) and ISE(f̂n) = 0.0001 (resp. 0.8675 for model 2).

(a) (b)

Figure 2.1. (a) Estimation of the density under model 1. (b) Estimation of the density
under model 2.

(b) Discussion on the choice of the kernel

Here we are interested in discussing the effect of the kernel on the estimation. Note that

if Xi falls in the interval x±h, then it is clear that the distance |Xi−x| does not exceed

h. i.e. |Xi − x| ≤ h and hence −1 ≤ Xi − x

h
≤ 1. Therefore, K has to be defined on

the interval (−1, 1). Also, K needs to be a density (integrates to 1) and it usually has a

symmetrical shape maximized at 0. In practice there are several examples of functions

satisfying the above conditions:

12



• Gaussian Kernel: K(u) =
1√
2π

exp

(
−u2

2

)
∀u ∈ R.

• Epanechnikov: K(u) = 3
4
(1− u2)1l{|u|≤1}.

• Uniform: K(u) = 1
2
1l{|u|<=1}.

• Triangular: K(u) = (1− |u|)1l{|u|≤1}.

• Biweight: K(u) = 15
16
(1− u2)1l{|u|≤1}.

• Cosine: K(u) = 1
2
(1 + cos(πu))1l{|u|≤1}.

Figure 2.2 displays the kernels graphically.

Figure 2.2. Examples of kernels.

In the literature, the choice of the kernel does not have a significant effect on

the quality of estimation. To show this, we compare them by running a simulation that

is based on random data generated from model 1 and model 2. Figure 2.3 shows six

plots of the two models for three different sample sizes. This time, our comparison is

based on the MISE criterion, which is defined as:

MISE(f̃) = E
∫ (

f(x)− f̃(x)
)2

dx (2.11)

13



The results are shown in Table 2.1 for both model 1 and model 2. As n increases, the

MISE values become closer and closer to each other, meaning that the effect of the kernel

becomes negligible. Moreover, by comparing the results of model 1 and model 2, it

is notable that the kernel estimator acts more effectively with symmetric distributions in

terms of minimizing errors.

(a) (b) (c)

(d) (e) (f)

Figure 2.3. Top 3 graphs: Estimation of the density under model 1 with sample size
n = 50, 100 and 500, respectively. Bottom 3 graphs: Estimation of the density under
model 2.
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Table 2.1. MISE and Median ISE values for each kernel under model 1 and model 2

Model 1 Model 2

MISE Median ISE MISE Median ISE

n = 50 Gaussian 0.00109 0.00087 0.10340 0.09874

Epanechnikov 0.00114 0.00092 0.10369 0.09886

Uniform 0.00105 0.00085 0.10271 0.09792

Triangular 0.00111 0.00088 0 .10286 0.09853

Biweight 0.00111 0.00036 0.09698 0.09799

n = 100 Gaussian 0.00072 0.00060 0.09967 0.09911

Epanechnikov 0.00070 0.00057 0.09955 0.09769

Uniform 0.00070 0.00058 0.09971 0.09748

Triangular 0.00071 0.00058 0.09945 0.09756

Biweight 0.00068 0.00055 0.10050 0.09852

n = 500 Gaussian 0.00038 0.00036 0.09710 0.09677

Epanechnikov 0.00039 0.00038 0.09733 0.09722

Uniform 0.00039 0.00037 0.09692 0.09648

Triangular 0.00039 0.00036 0.09728 0.09680

Biweight 0.00039 0.00036 0.09698 0.09696

(c) Discussion on the choice of the bandwidth: a Bias-Variance trade-off

In contrast to the kernel parameter, the bandwidth, h, has a significant effect on

the quality of estimation. The choice of h is crucial since it controls the smoothness of

the estimator. Large values of h reduce the variability of the estimator but increase its
15



bias (over-smoothing), while small values do the opposite (under-smoothing). Further,

increasing h may lead to ignoring some important features of the true distribution, while

decreasing it may lead to capturing unnecessary details (see, for example, Silverman

1952, p.15). Hence, it is important to build a criterion that considers a trade-off between

the bias and the variance of the estimator. Note that the Mean Square Error (MSE) defined

as follows is the most common criterion used in the literature:

MSE(f̂n) = E
(
(f̂n − f)2

)
(2.12)

= (bias(f̂n))
2 + var(f̂n).

The identification of the optimal bandwidth minimizing the MSE requires the

calculation of the bias and the variance of the estimator. In such a case, the optimal h

that minimizes the (asymptotic) MSE will depend on several unknown quantities such

as the density itself. Therefore, one can consider a numerical approach to identify the

optimal bandwidth by minimizing the empirical version of the MSE defined in (2.12). In

the following, we introduce the so-called cross-validation approach to find a numerical

approximation of the asymptotic optimal bandwidth. That is:

hopt = argmin
h∈H

1

n

n∑
i=1

(
f̂n(Xi, h)− f(Xi)

)2

, (2.13)

where H is a set of possible values of h. To illustrate the principle of data-driven

selection of the smoothing parameter, we consider a simulation study.

We generate 500 observations according tomodel 1, and we choose the Gaussian

kernel to calculate f̂n. Our purpose is to find the optimal bandwidth, hopt, that minimizes

the cross-validation criterion, defined in (2.13). Figure 2.4 shows the objective function
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(2.13) and the location of optimum h. Moreover, Figure 2.5 shows how the choice of the

bandwidth affects the quality of estimation. The middle graph represents the estimator

using hopt. Also, note that small and large values of h result in either under-smoothed

or over-smoothed estimators.

Figure 2.4. Optimal h according to cross-validation criterion.

Figure 2.5. Effect of different choices of h.
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Nonparametric regression estimation

In this section, we are interested in a nonlinear regression model of the form:

Y = m(X) + ϵ. (2.14)

As we discussed above, under the assumption E(ϵ|X) = 0, one gets

m(x) = E(Y | X = x)

=

∫
yfY |X(y|x)dy

=

∫
y
fXY (x, y)

fX(x)
dy,

where fXY is the joint probability density of (X, Y ) and fX is the marginal of X. A

nonparametric estimator of the fX , at any fixed point x, is given in (2.9). Similarly, one

can define a kernel-type estimator of fXY . That is

f̂XY,n(x, y;h) =
1

nh2

n∑
i=1

p∏
j=1

Kj

(
Xj − x

h

)
H

(
Yj − y

h

)
, (2.15)

where H is a kernel associated to the random variable Y. For simplicity, we consider

here that X and Y have the same bandwidth h.

Finally, a plug-in estimator of m, at any point x, is obtained by replacing fX and

fXY by their empirical version given in (2.9) and (2.15). Moreover, making use of some
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calculus tools, one can show that

m̂n(x) =

n∑
i=1

YiK

(
Xi − x

h

)
n∑

i=1

K

(
Xi − x

h

) , (2.16)

where K and h are the kernel and the bandwidth, respectively. The technical details

that lead to m̂n are given in the Appendix. The regression estimator given in (2.16) is

called Nadaraya-Watson estimator (see [1] and [2])

One of the important properties that should be considered when studying any

estimator is the convergence rate, which indicates how fast the estimator is reaching

the true value, as the sample size increases. The rate of convergence depends on the

sample size and the dimension of the covariate X . The effect of the dimesionality will

be discussed in a later section.

Theorem 3 (Mean Square Convergence).

n4/(d+4) E(m̂n(x)−m(x))2 −→ c

where d is the dimension of X and c is a constant (see Theorem 3.1 in page 70, [3] for

more details about the expression of the constant).

Under some regularity conditions, and if we suppose that the optimal bandwidth

is selected according to hn = cn n−1/(d+4), where cn −→
n−→∞

c, then the above Theorem

holds true. In words, one consequence of this Theorem is that asymptotically,

E(m̂n(x)−m(x))2 =
c

n4/(d+4)
.
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This means that the convergence rate depends on the sample size n and the dimension

of the data, d. Assume we fix n. Let d = 1, then the convergence rate is proportional

to
c

n4/5
. Now, if d = 2, then the convergence rate is proportional to

c

n4/6
. It can be

observed that the convergence rate decreases as the dimension d increases. This also

applies to the bandwidth. Asymptotically, hn is proportional to n−1/(d+4), and hence d

causes the bandwidth to decrease as well.

Remark 2. Since the constant c in Theorem 3 depends on several unknown parameters,

such as the regression function m and the density f , it is not possible to find the optimal

bandwidth based on the minimization of the asymptotic Mean Square Error.

Now we use simulated data to illustrate the effect of

Data-driven choice of the bandwidth

The choice of optimal h is based on minimizing the cross-validation function.

In other words,

hopt = argmin
h∈H

1

n

n∑
i=1

(Yi − m̂n,−i(Xi))
2. (2.17)

To illustrate how m̂n(x) is used in estimating non-linear models, we consider the

quadratic function, which is defined as m(x) = x2. Then, based on this function, we

generate n = 500 observations through (Xi, Yi)i=1,...,n by

Yi = m(Xi) + ϵi i = 1, . . . , n,

where X ∼ Unif(−3, 3) and ϵ ∼ N (0, 1). Figure 2.7 shows the random sample and the

true curve.
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In order to use (2.16) in estimation, we choose the Gaussian kernel for K, and

we select the optimum h based on minimizing the cross-validation function, as shown

in Figure 2.6. To illustrate the influence of h on the quality of estimation, we consider

three values of the bandwidth: the optimal one and two values below and above. The

three plots are shown in Figure 2.7. It can be observed that small values of h result

in unbiased but inconsistent estimators (under-smoothing, left graph), and large values

result in consistent but biased estimators (over-smoothed, right graph), while the optimal

h makes a balance between these two features (middle graph).

Figure 2.6. Optimal h that minimizes the CV function.

Figure 2.7. The effect of h on the estimated regression function.

Let us now consider the bivariate case where X is two-dimensional. In this
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simulation, we generate X1 and X2 from the Uniform distribution with parameters -1.5

and 1.5. Then, Y is generated by

Y = m(x1, x2) + ϵ.

where ϵ ∼ N(0, 1). We define m(·) using the following two models:

model 1: m(x1, x2) = cos(2x1) + cos(2x2) + 4

model 2: m(x1, x2) = x1 + x2 + 5

To see the effect of the sample size, we generate two samples for each model,

which are of sizes 100 and 300. The results are visualized in Figure 2.8 and Figure 2.9.

The optimal bandwidth values for the first model are 0.2930 and 0.2346, while for the

second model 0.3978 and 0.3324, for the two samples, respectively. It can be noticed

from the figures that increasing the sample size enhanced the estimation for the two

models.

The previous two examples illustrated the effect of the bandwidth and the sample

size on the accuracy of estimation. Previously we introduced the difficulty of controlling

model accuracy as it contains more predictors. The coming section aims to illustrate

that with a simulation study.

Curse of dimensionality

As discussed above, the quality of estimation is affected by the choice of the

bandwidth, the sample size, and the dimension of the covariate. This section focuses

on the effect of the dimension. For a fixed sample size n = 300, three random samples

(Xi, Yi)i=1,...,n are generated such that:
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Figure 2.8. Graphical illustration of the effect of the sample size. Leftmost: The true
regression function. Middle: An estimation of the regression function using a sample
of size 100. Rightmost: An estimation of the regression function using a sample of
size 300.

• For the first sample, X ∼ N(0, 1)

• For the second sample, X is generated from a Normal distribution with mean

µ = 0, σ2
1 = σ2

2 = 1 and ρ12 = −0.7

• For the third sample, X is generated from a Normal distribution with µ = 0,

σ2
1 = σ2

2 = σ2
3 = 1 and ρ12 = ρ23 = −0.7, ρ13 = 0.5

and Yi is generated by

Yi = m(Xi) + ϵi i = 1, . . . , n,

For the three models, we consider ϵi to be generated from the standard Normal distribu-

tion. Estimations are obtained by m̂n(x) and the MSE values are recorded. The values
23



Figure 2.9. Graphical illustration of the effect of the sample size. Leftmost: The true
regression function. Middle: An estimation of the regression function using a sample
of size 100. Rightmost: An estimation of the regression function using a sample of
size 300.

are 0.0266, 0.1083, 0.1769, for the three models, respectively. Note that increasing the

dimensionality causes the estimated errors to increase. Moreover, the mean bandwidth

values for each of the three models are: 0.17, 0.23, 0.26. Again, it can be noted that the

optimal bandwidth increases as d is increased.
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CHAPTER 3: REGRESSION ESTIMATION WITH MASSIVE DATA

In this chapter, we discuss the recursive estimation of the regression function.

This estimator is designed to “properly” update the last value of the regression function,

calculated at a fixed point x, as the sample size increases. The main advantage of this

estimator is that its calculation does not necessarily requires any storage of the data

which makes it adapted for the data streaming context. Moreover, it also can be used

when we have to estimate the regression function when a massive database is available.

In both cases, only a reasonably limited number of observations are needed to calculate

the initial value, then we keep updating the estimate as the sample size grows.

Stochastic Approximation

The online regression estimation is inspired by the idea of stochastic approxi-

mation. Stochastic approximation is a class of recursive methods to find the zero root

or the optimum of a function via noisy observations. In the last decades, stochastic ap-

proximation has been widely applied in many areas, such as signal processing, control

theory and pattern recognition.

In practice, we often come across root-seeking problems such as in regression

analysis where the purpose is to understand how a response variable is concomitant

with some predictors. The regression function is often identified as the solution of a

certain minimization problem. Thus a zero of a certain estimating equation (under some

smoothness of the objective function to be minimized). The least square estimator and

maximum likelihood estimator are examples of estimators that might be written as a

zero of a certain estimating equation.

In general, if one desires to find the zero root x0 of some known function G(x)
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such that G(x0) = 0, then the Newton-Raphson method is an alternative given by

xn+1 = xn −
G(xn)

G′(xn)
. (3.1)

However, in some situations the form of G(x) is unknown and only noisy obser-

vations of G(x) are available via

yn = G(xn) + ηn,

where ηn’s are observational errors. Then the question is how to find the zero of G(x)

via the observations {yn}. [4] proposed the recursive procedure (also known as the

Robbins-Monro algorithm) to fulfill this work

xn+1 = xn + anyn, (3.2)

where the step size an > 0 satisfies
∑∞

n=1 an = ∞ and
∑∞

n=1 a
2
n < ∞. For example,

one can take an = 1/n to satisfy both conditions. Comparing (3.1) and (3.2), it is

apparent that the Robbins-Monro algorithm can be regarded as a kind of nonparametric

method which does not leave the form of the function G(x) to be specified. Inspired by

[4] work, [5] proposed a recursive method to find the maximum of a function. Note that

the continuous function G(x) reaches the maximum at the point x0 when G′(x) = 0.

Therefore, the optimization problem is also equivalent to finding the root of G′(x) = 0.

The authors proposed the recursive procedure to find the maximum of G(x) in the case

that there are only observations of G′(x) available.
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Recursive estimator

It can be shown that the problem of root seeking is closely related to nonpara-

metric estimation. In order to estimate m(x) in (2.6), let r(y) = f(x)y − f(x)m(x)

where f(x) is the density function of X , then one can estimate m(x) by finding the root

y0 such that r(y0) = 0.

Given a random sample (X1, Y1), . . . , (Xn, Yn), [6] proposed a recursive method

to estimate m(x) given by

m̂n(x) = m̂n−1(x) +
1

n
K

(
∥Xn − x∥

hn

)
(Yn − m̂n−1(x)) , (3.3)

where one can consider m̂0(x) = 0. Other choices for the initial value are also possible.

Remark 3. Note that equation (3.3) could be called a totally recursive procedure since

only one formula is used to estimate m(x).

A class of Robbins-Monro estimators

In this project, we consider a large class of Robbins-Monro estimators of the

regression function. For this, we write (3.3) for any step-size, say θn. That is:

m̂n(x) = m̂n−1(x) + θn (Yn − m̂n−1(x)) , (3.4)

where (θn)n is a sequence of positive numbers tending to zero as n goes to infinity.

Several step size choices could be considered in practice. Some of them will

make the calculation of m̂n(x) faster than others. Below, we give some examples of θn:

1. θn = 1/n
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2. θn = ∆n/
∑n

i=1∆i, where ∆n := K(∥Xn − x∥/hn).

3. θn = ∆nhn/
∑n

i=1∆ihi

4. θn = ∆n/nhn

5. θn =
γn
hn

·K
(
∥Xn − x∥

hn

)
Note that some choices of the step size involve the selection of the optimal

bandwidth as is the case in cases 2-5 above. Note that the bandwidth depends on

the iteration number n. This means that we have to select an optimal bandwidth at

each iteration which will make the total computation time slower. Since the purpose

of using the recursive estimator is to reduce the computation time, we prefer to avoid

these choices of the step size. The fifth form involves two quantities that depend on the

sample size n. However, without losing the consistency of the estimator, Cardot(2012)

mentioned that the following assumptions can be imposed:

γn =
cγ
nγ

hn =
ch
nh

.

Hence, the step size becomes

θn = cγ ·K(n
1

d+4 · ∥Xn − x∥)/n
d+3
d+4 , (3.5)

where cγ is optimally selected by the cross-validation technique. The quantity

cγ does not depend on the sample size, and hence it is chosen only once. Moreover,

note that choosing an hn proportional to the sample size is also considered for simplicity

reasons and is also justified theoretically as this is the order for an offline estimator.
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On the consistency of the Robbins-Monro estimator

When comparing the quality of estimators, it is of interest to examine two

important properties, the accuracy and the computation time. Intuitively, as the sample

size increases, both of them increase as well. However, we prefer using estimators that

is not time-consuming but provide reasonably accurate estimations. There is a trade-off

between these two properties. Thus, we will use simulated data to study each of them.

For a sequence of different sample sizes that ranges between 30 and 19500, we simulate

X1, X2 ∼ Unif(−1.5, 1.5), and

Y = m(x1, x2) + ϵ,

where m(x1, x2) = cos(2x1) + cos(2x2) + 4 and ϵ ∼ N (0, 1).

Then, we use the offline estimator and the online estimator to estimate the function

m at the point (0, 0). For the online estimator, we considered the following choices of

the step size: θn = 1/n and θn = cγ ·K(n
1

d+4 · ∥Xn − x∥)/n
d+3
d+4 .

Also, for the second form of θn, we considered different choices of cγ , which are

0.1 and 1. The results are shown in Figures 3.1 and 3.2.

It can be seen that the offline estimator converges to the true values as the sample

size increases, while for the online estimator with θn = 1/n, the estimator deviates away

from the true value. Moreover, considering the second choice of the step size for the

online estimator, the second two plots show that the online estimator is sensitive to the

choice of cγ .

It is worth mentioning that the optimal choice of cγ depends on the data. This

quantity has to be chosen by the cross-validation technique and by considering a sequence
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of cγ that depends on the sample size.
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Figure 3.1. The convergence rate of the offline estimator.

0 5000 10000 15000

2
.8

3
.0

3
.2

3
.4

3
.6

n

S
q

a
u

re
d

 E
rr

o
r

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

n

S
q

a
u

re
d

 E
rr

o
r

0 5000 10000 15000

0
.0

0
.1

0
.2

0
.3

0
.4

n

S
q

a
u

re
d

 E
rr

o
r

(a) (b) (c)

Figure 3.2. (a) The convergence rate for the online estimator using the first choice of
θn. (b) and (c) The convergence rates for the online estimator using the second choice
of θn with cγ = 0.1 and cγ = 1, respectively.

Computation complexity and comparison with the offline estimator

In the preceding section, we compared the consistency of the two estimators

using simulated data. In this section, we compare them in terms of the computation

time. In the univariate setting, a random sample (Xi, Yi)i=1,...,5000 was generated such

that: X ∼ N(0, 1) and Y = m(X) + ϵ where ϵ ∼ N(0, 1) and m is defined by
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m(x) = x2. Consider the case where we have online data that is accumulating over

time. Whenever a new observation is received, a new point estimation is calculated

using both estimators. The nonrecursive estimator re-evaluates m̂(x) using the whole

available sample, including the new observation. However, the recursive estimator

updates the previous estimation using only the new data point. The computation time

taken by each estimator is recorded in seconds. Figure 3.3 shows the cumulative time of

computation for both estimators. There are two notable differences between the plots,

the range of values of the computation time, and the growth rate. By the time we reached

the last observation, the total time consumed by the nonrecursive estimator exceeded

20 seconds, while it did not reach one second for the recursive one. Moreover, the

exponential shape of the first plot indicates that the running time of the non-recursive

estimator increases much faster than that of the recursive one.

Figure 3.3. Cumulative computation time for the nonrecursive estimator (left).
Cumulative computation time for the recursive estimator (right).
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CHAPTER 4: OFFLINE AND ONLINE SUPERVISED LEARNING

In chapter 3 we discussed the estimation of the regression function when the

response variable is continuous. The Robbins-Monro estimator can be used for example

to predict unknown values of a response given a certain number of predictors. It can

also be used for online time series forecasting. In some real-life problems, the response

variable is not continuous but rather categorical. The problem then becomes a supervised

classification problem. This chapter aims to discuss this case.

Offline supervised learning

In the previous chapter, we discussed the construction of the Nadaraya-Watson

estimator, defined as

m̂n(x) =

∑n
i=1 YiK

(
Xi − x

h

)
∑n

i=1K

(
Xi − x

h

) ,

where K and h are the kernel and the bandwidth, respectively. This formula implies

that an estimation of m at a fixed point x can be obtained by taking the weighted average

of Y . Closer the distance between x and Xi, higher the weight assigned to Yi.

In this section, we discuss the adaptation of this estimator to the case of supervised

learning. Consider Y to be a categorical variable that takes one of G possible classes,

and X is a vector of d independent random variables. In order to predict the class of

Ynew, we need to find whether Ynew = g is true for each of the G possible classes. This

means the response variable we need to predict is 1l{Ynew=g}. As discussed before, our

regression model 2.14 predicts the response based on the expectation. Hence, our aim

now is to estimate E(1lYnew=g). Note that the indicator function 1l evaluates to 1 if the

condition Ynew = g is true, and takes 0 otherwise. Hence, the quantity 1l{Ynew=g} can be
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looked upon as a Bernoulli random variable with P(Ynew = g) being the probability of

success, which is also the expectation. In other words,

P(Ynew = g|X = Xnew) = E(1l{Ynew=g}|X = Xnew). (4.1)

In the case of using the non-recursive estimator, this probability is estimated by

P̂g,n(Xnew) =

∑n
i=1 1l{Yi=g}K

(
∥Xi −Xnew∥

h

)
∑n

i=1K

(
∥Xi −Xnew∥

h

) , (4.2)

where K and h are the kernel and the bandwidth, respectively. Note that because of

the indicator function, only the features of the specified class will contribute to the

calculation of P̂g,n(Xnew). Assume that we are given Xnew, and the true class is j. To

predict Ynew, 4.2 is calculated for each possible class. When it comes to calculating

P̂j,n(Xnew), the distance ∥Xi −Xnew∥ will decrease whenever Yi satisfies Yi = j. This

is because items of the same class are expected to have similar features. As as a result,

the estimated probability, P̂j,n(Xnew), will be higher. However, for all other classes, the

distances ∥Xi −Xnew∥ will increase, and hence the estimated probability will be lower.

Therefore, the predicted class of Ynew will be the one corresponding to

max
g∈{1,...,G}

P̂g,n(Xnew).
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Online supervised learning

In the case of using the recursive estimator for the purpose of classification,

equation 3.4 is re-written as

P̂g,n(Xnew) = P̂g,n−1(Xnew) + θn[1l{Yi=g} − P̂g,n(Xnew)], (4.3)

where θn is called the step size can take any of the forms mentioned in section 3.2. Note

that the initial value is calculated based on the offline estimator in equation 4.2.
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CHAPTER 5: SOME PREDICTIVE MODELS IN BIG DATA SETTING

In this chapter we provide three applications of the estimators introduced in

chapter 3 and 4. The first application aims to predict the class of dates in real-time

given some dimension/size/shape, color and texture predictors. This application is of

great interest in food-quality assessment. The second one is medical which consists

in real-time monitoring of fetal well-being during pregnancy. Given a certain number

of medical measures, the proposed model allows to assist the doctor to decide whether

the fetal state is normal, suspicious or pathological. Finally, we apply the proposed

Robbins-Monro estimator to predict the value of a real estate in Qatar in real-time.

Application to supervised dates data classification

In the previous chapters, we discussed the recursive and non-recursive methods

for estimating the non-linear regression model

Y = m(X) + ϵ.

Also, we illustrated by simulation the trade-off between the accuracy and the computation

time. In this chapter, we are going to apply these methods of estimation using real data.

Again, we will use the results to compare the estimators based on their accuracy and

time of computation.

The first application is concerned with fruit classification. Particularly, we are interested

in training our model to detect different date varieties based on their characteristics.

Our dataset consists of 150 observations on 18 variables, where one of the variables

identifies the date variety. There are five classes of dates in this sample, which are:

Khalas, Fardh, Lulu, Segai, and Majdoul. Each class has 30 observations. Table 5.1
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shows a summary of the quantitative variables.

Data Description and Exploration

Table 5.1. Descriptive statistics about the dates variables

Summary statistics

Variables Min. Q25 Median Mean Q75 Max.

L 2.661 2.066 3.270 3.311 3.507 4.284

D1 1.024 1.506 1.657 1.656 1.780 2.217

D2 1.678 2.000 2.127 2.138 2.280 2.773

D3 0.797 1.097 1.256 1.266 1.395 1.858

Area 3.918 5.052 5.632 5.704 6.193 8.442

Perim. 7.519 8.804 9.182 9.264 9.703 11.477

Circ 0.6930 0.8090 0.8370 0.8316 0.8570 0.9300

Skew -0.2700 0.7272 1.0335 1.0235 1.2760 1.9230

AR 1.215 1.456 1.593 1.585 1.700 2.002

Solidity 0.9480 0.9740 0.9800 0.9783 0.9840 0.9920

Red 62.34 79.11 99.68 100.76 118.96 164.35

Green 43.39 53.76 58.75 61.22 68.29 103.06

Blue 38.84 48.49 51.90 51.60 54.85 61.29

IDM 2.12E-4 2.922E-4 3.34E-4 3.451E-4 3.808E-4 6.89E-4

Entropy 0.4300 0.4833 0.5000 0.4975 0.5100 0.5400

SumofallGLCM 6.551 6.874 6.971 6.974 7.069 7.399
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In this dataset, there is a total of 17 predictive continuous variables. As discussed

previously, using a high number of features has a negative effect on the accuracy of

prediction. For that reason, it is important to reduce the dimensionality by summarizing

the information in a smaller set of variables. One way of achieving that is by performing

the Principal Component Analysis (PCA). The PCA is a factor extraction technique that

produces a new set of uncorrelated variables, called factors, that are linear combinations

of the original variables. The PCA works well when the features are strongly correlated.

Hence, it is reasonable to look at the correlation matrix at the first step.

Figure 5.1. Correlation plot of the quantitative variables in the Dates dataset

Figure 5.1 visualizes the pairwise correlations of the numerical variables. Strong

correlations are identified by the dark blue color if the correlation is positive, and by

dark red if it is negative. It can be seen that some variables are strongly correlated

with each other. For example, Area has a strong positive correlation with Perim, while

AR has a strong negative correlation with Circ. The presence of highly correlated

variables results in multicollinearity, which reduces the accuracy of prediction. This,
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again, suggests using uncorrelated factors instead of the observed variables.

The Scree plot in Figure 5.4 shows that most of the variability can be explained

by the first five principal components. More precisely, these components capture 70 to

75 percent of the total information.

Figure 5.2 shows the first two principal components on the two axes, along

with the original variables represented by arrows. The angle between an arrow and a

principal component indicates the direction of the corresponding variable with respect

to that component, where the strength of its contribution is depicted by the length of

that arrow.

Figure 5.2. The contribution of each quantitative predictor to the first two dimensions.
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Figure 5.3

Figure 5.4. The Screeplot of the first five principal components.

In addition to using the recursive (RM) and non-recursive (NW) estimators,

other classifiers will be used for comparison purposes. These classifiers are: Linear

Discrimination Analysis (LDA), Quadratic Discrimination Analysis (QDA), and K-
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Nearest Neighbors (KNN).

The LDA and QDA are two similar classification techniques that are based on

maximizing the variance between classes. Both of these methods assume that the un-

derlying distribution of each class is a multivariate Gaussian distribution. Additionally,

the LDA is a special of the QDA since it assumes that the covariance matrices of these

distributions are equal.

Given a vector of d features, Xnew, the predicted class of this vector is the one

corresponding to:

max
g∈{1,...,G}

P̂(Y = g|Xnew) = max
g∈{1,...,G}

πgfg(Xnew)∑G
k=1 πkfk(Xnew)

, (5.1)

where

• G is the number of classes.

• πg =

∑n
i=1 1l{Yi=g}

n

• fg(Xnew) = P(Xnew|Y = g)

Note that P̂(Y = g|Xnew) in equation 5.1 is computed using Bayes’ Theorem.

The QDA relaxes the assumption of equal covariance matrices, and hence it is

more flexible that the LDA. However, this also means that it requires estimating more

parameters, which is problematic if the sample is not large enough.

For the recursive classifier, we consider the following form of the step size:

θn = cγ ·
K(n

1
d+4 · ∥Xn − x∥)

n
d+3
d+4

.

As we have discussed, cγ plays an important role in the quality of the recursive estimator.
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In order to find the optimal value of cγ , we considered a sequence of 100 values that

has a range between 0.1 and 500. The optimal one is selected based on minimizing

the misspecification rate (MSR). Figure 5.5 shows that the minimum MSR occurs when

cγ = 157.38. To illustrate the effect of cγ on the MSR, we select two additional values

below and above the optimal value.

In order to test the accuracy of each of the five classifiers, we split the data

into two sets, a training sample and a test sample. Since each date variety has 30

observations, we built the training sample by randomly selecting 24 observations from

each variety, while the remaining observations are assigned to the test sample. The

MSR and the computation time are recorded for each classifier. Table 5.2 shows the

computation time in seconds. Moreover, in order to compare the classifiers in terms of

bias and variance, this process is done 100 times, and the boxplots of the MSR are shown

in Figure 5.6. Note that for the recursive estimator, the optimal cγ results in the least

MSE value but with reasonable variance compared to the other choices. This shows the

trade-off between bias and variance. Moreover, it can be noticed that it outperforms all

other estimators in terms of accuracy and variance

Table 5.2 shows the time required by each classifier. For the Robins-Monro

classifier, the computation time does not differ much for the different values of cγ . So,

we report the time for only one case of cγ . Note that the first three classifiers are very

quick. This is because they are based on fitting a model and using that model directly for

classification. On the other hand, the offline estimator computes the optimal bandwidth

for each increase in the sample size. That is why it is a time-consuming classifier.
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Figure 5.5. Optimal choice of cγ .
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Figure 5.6. Boxplots of the (MisSpecification Rate) MSR of each classifier.

Table 5.2. The computation time in seconds of each classifier.

Classifier LDA QDA KNN RM, Optimal cγ NW

Computation Time 0.02 0.01 0 0.16 4274.83
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Application to real-time monitoring of fetal well-being during pregnancy

Machine learning has made significant strides in obstetrics and improved the

standard of care for expectant mothers and their babies. It is essential in the real-time

monitoring of fetal health during pregnancy. Statistical learning algorithms can identify

subtle patterns and deviations that may point to potential abnormalities or complications

by analyzing extensive data collected from monitoring devices, such as fetal heart rate

and maternal vital signs.

This early detection enables medical professionals to take immediate action,

reducing risks and improving outcomes. Additionally, machine learning models in-

corporate various factors, such as demographic data, medical history, and real-time

monitoring data, to provide personalized risk assessments, allowing for tailored insights

and well-informed decision-making. These algorithms are also excellent at identify-

ing preterm births in advance, using large datasets to identify contributing factors and

provide early warning signs.

Additionally, machine learning is an effective tool for decision support, continu-

ously analyzing monitoring data to offer healthcare providers insights and suggestions. In

addition to improving prenatal care, this data-driven approach also stimulates obstetrics

research and innovation, resulting in improved monitoring methods, fresh interventions,

and a better understanding of fetal well-being.

Cardiotocography (CTG) is a technique that aims to collect a sequence of mea-

surements of the fetal heartbeat along with uterine contractions. The purpose of this

technique is to monitor fetal well-being during pregnancy and labor. Before or during

birth, babies may suffer from Oxygen deprivation for multiple reasons. This lack of

Oxygen affects the growth of the baby’s organs and causes permanent damage to them.
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Hence, it is necessary for medical doctors to collect such information in order to detect

the issue earlier and take timely actions. The available dataset here consists of 2126

observations on 21 variables. One of the variables classifies the fetal state: Normal,

Suspicious, or Pathological. Table 5.3 provide some information about the variables,

and Table .5 (see Appendix) provides some descriptive statistics.

As we have discussed, dealing with high-dimensional data requires performing

some dimensionality-reduction techniques to avoid the curse of dimensionality. Figure

5.7 shows that the variables exhibit some strong correlations, which suggests using the

PCA to extract the latent factors. It can be seen from the Scree plot in Figure 5.8 that

it suffices to use the first three principal components, which summarise 56.2% of the

information in the data.
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Figure 5.7. Correlation plot of the quantitative variables in the CTG data.
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Table 5.3. CTG variables.

Features Attribute Information

LB FHR baseline (beats per minute)

AC Number of accelerations per second

FM Number of fetal movements per second

UC Number of uterine contractions per second

DL Number of light decelerations per second

DS Number of severe decelerations per second

DP Number of prolonged decelerations per second

ASTV Percentage of time with abnormal short term variability

MSTV Mean value of short term variability

ALTV Percentage of time with abnormal long term variability

MLTV Mean value of long term variability

Width Width of FHR histogram

Min Minimum of FHR histogram

Max Maximum of FHR histogram

Nmax Number of histogram peaks

Nzeros Number of histogram zeros

Mode Histogram mode

mean Histogram mean

Median Histogram median

Variance Histogram variance

NSP Fetal state class code (N=normal, S=suspect, P=pathologic)
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Figure 5.8. Scree Plot of the principal components of the CTG data.

We aim to assess the performance of the Robins-Monro estimator using two

forms of the step size, which are: θn = 1/n and θn = cγ ·K(n
1

d+4 · ∥Xn − x∥)/n
d+3
d+4 ,

respectively. Note that these forms do not require the computation of the optimal

bandwidth and hence are better in terms of reducing the computation time. Note that

the second form requires the optimal choice of cγ . For this, we defined a sequence of

50 values between 200 and 1000. Figure 5.9 shows that the optimal value is 673.47.

For this, the sample was partitioned into training and test samples according to

the fetal state categories, which is illustrated in table 5.4.
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Table 5.4. The partitioning of the sample by the NSP variable.

Fetal State Normal Suspicious Pathological Total

Training sample 1200 200 100 1500

Test sample 455 95 76 626

Total 1655 295 176 2126
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Figure 5.9. Optimal choice of cγ for the CTG data.

Also, as we have done in the previous application, we aim to compare the

performance Robins-Monro classifier with some parametric classifiers, which are the

LDA and QDA, and the non-parametric KNN classifier. Figure 5.10 shows the boxplots

of the misspecification rate of the classifiers. Robins-Monro classifier with the first

choice of θn has the worst performance. However, with the second choice of θn, and by

choosing the optimal cγ , Robins-Monro performs better compared to the LDA and QDA.
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However, unlike, the result of the previous application, its performance falls behind that

of KNN.

lda qda knn rec.L1 cgamma.300 cgamma.opt cgamma.900
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Figure 5.10. Boxplots of the misspecification rate (MSR) of each classifier.
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Application to Real-Estate Value prediction in Qatar

Real estates are properties consisting of land and any permanent structures or

improvements on the land, whether natural or man-made. There are multiple types

of real estate, they could be residential, commercial, vacant lands, etc. Some people

are interested in buying or investing in real estate. Therefore, it is important to assess

whether a real estate is worth the money on the long term. The real estate value is

defined to be the actual or estimated market value of any real property/building owned

by the company/business applying for a certificate. There are several factors affecting

the real estate value. These include the size of the real estate, its type, its location,

etc. The real estate value is crucial since it helps the investor to take a decision on the

investment.

In the dataset, we have two predictors, which are the area in square meters and

the price per square foot. Their correlations with the real estate value are 0.45 and 0.62,

respectively. However, the product of the area and the price is almost perfectly correlated

with the real estate value, and hence will be used in the predictive model. Moreover,

there are two categorical variables, which are the municipality and the real estate type.

Figures 5.11 and 5.12 show the distribution of real estate values by municipality and

type, respectively. By looking at some descriptive statistics, we noticed that the real

estate value differs for different types in the same municipality. This also applies to the

values of the same real estate type in different municipalities. These differences can

be clearly seen in Figures 5.13, 5.14 and 5.15. Hence, the model will be trained after

filtering the data by municipality and type. For example, if we are given the area and the

price of a new real estate, along with the information regarding its location and type, we

will extract from the data the observations that match with the location and type of the
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new observation. Moreover, since the non-parametric techniques work better with large

data sets, and since they are time saving when the sample size increases, we are going to

use the Robins-Monro estimator if the extracted data contains more than 30 observations.

For the subgroups that are of size 30 or below, we use the Nadaraya-Watson Estimator.

Figure 5.16 shows the eight municipalities of Qatar, where the darkness of the

color is determined by the mean real estate value. The prediction results are visualized

in Figure 5.17. It can be seen that the colors of the second graph are very close to those

of the first graph. Moreover, Figure 5.18 shows that boxplots of the true and predicted

values are close to each other, which reflects the quality of the predictions.

Figure 5.11. Distribution of real estate value by municipality.
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Figure 5.12. Distribution of real estate value by type.

Figure 5.13. Initial Shiny Application to explore the real estate data in Qatar.

51



Figure 5.14. Initial Shiny Application to explore the real estate data in Qatar.

Figure 5.15. Initial Shiny Application to explore the real estate data in Qatar.
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Figure 5.16. Observed average real estate value by municipality. Pop-up shows the
mean, first and third quartile values.

Figure 5.17. Estimated average real estate value by municipality. Pop-up shows the
mean, first and third quartile values.
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Figure 5.18. Boxplots of the actual and predicted real estates value for each
municipality.
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APPENDIX

Derivation of m̂n(x)

As discussed in Section 2.2.2, m(x) is identified, at any fixed point x, as:

m(x) = E(Y | X = x)

=

∫
yfY |X(y|x)dy

=

∫
y
fXY (x, y)

fX(x)
dy,

where fX is the marginal density of X and fXY is the joint density of X and Y . The

kernel-type estimators of fX and fXY are defined as follows:

f̂n(x;h) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
f̂XY,n(x, y;h) =

1

nh2

n∑
i=1

K

(
Xi − x

h

)
H

(
Yi − y

h

)
.

Therefore, a plug-in estimator of m can be defined after replacing fX and fXY by their

empirical version. That is, for any fixed x, one gets

m̂n(x) =

∫
y

n−1h−2

n∑
i=1

K

(
x−Xi

h

)
H

(
y − Yi

h

)
(nh)−1

n∑
i=1

K

(
x−Xi

h

) dy

=

n∑
i=1

K

(
x−Xi

h

)
h

n∑
i=1

K

(
x−Xi

h

) ∫
y H

(
y − Yi

h

)
dy.
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Let u = h−1(y − Yi). Then

m̂n(x) =

n∑
i=1

K

(
x−Xi

h

)
h

n∑
i=1

K

(
x−Xi

h

) h

∫
(uh+ Yi) H(u)du

= h

∫
uH(u)du+

n∑
i=1

K

(
x−Xi

h

)
Yi

n∑
i=1

K

(
x−Xi

h

) ∫
H(u)du.

Note that if we assume that H is a symmetric density function then
∫
H(u)du = 1 and∫

uH(u)du = 0. Hence, we finally obtain

m̂n(x) =

n∑
i=1

K

(
x−Xi

h

)
Yi

n∑
i=1

K

(
x−Xi

h

)
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Table .5. Descriptive statistics about CTG Variables

Quantity

Variables Min. Q25% Median Mean Q75% Max.

LB 106.0 126.0 133.0 133.3 140.0 160.0

AC 0.0 0.0 0.001630 0.003170 0.005631 0.019284

FM 0.0 0.0 0.0 0.009474 0.002512 0.480634

UC 0.0 0.001876 0.004482 0.004357 0.006525 0.014925

DL 0.0 0.0 0.0 0.001885 .003264 0.015385

DS 0.0 0.0 0.0 3.585E-06 0.0 1.353E-03

DP 0.0 0.0 0.0 .0001566 0.0 0.0053476

ASTV 12.0 32.00 49.00 46.00 61.00 87.00

MSTV 0.200 0.700 1.200 1.333 1.700 7.000

ALTV 0.0 0.0 0.0 9.847 11.0 91.0

MLTV 0.0 4.600 7.400 8.188 10.800 50.700

Width 3.00 37.00 67.50 70.45 100.00 180.00

Min 50.00 67.00 93.00 93.58 120.00 159.00

Max 122 152 162 164 174 238

Nmax 0.0 2.00 3.00 4.06 6.00 18.00

Nzeros 0.0 0.0 0.0 0.3236 0.0 10.00

Mode 60.0 129.0 139.0 137.5 148.0 187.0

Mean 73.0 125.0 136.0 134.6 145.0 182.0

Median 77.0 129.0 139.0 138.1 148.0 186.0

Variance 0.0 2.00 7.00 18.81 24.00 269.00
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