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ABSTRACT 

ABDULLA, SHAIKHA AHMED, Masters : June : 2020, Applied Statistics  

Title: Proportional Hazard Regression Model for Prison Partly Interval Censored Data 

Supervisor of Thesis: Faiz Ahmed Mohamed Elfaki 

In this thesis the analysis of well known model in survival study that is Cox 

proportional hazard regression model via prison Partly Interval Censored (PIC) data is 

used. In this model several imputation techniques are used that is; left point, mean and 

median. The maximum likelihood estimate was considered to obtain the estimated of 

the model parameter and the survival function and then the results were compared. In 

contrast, the data needed to be modified to PIC data for the proposed of the 

researcher’s needs. Likewise, simulation data was generated where the failure rates 

were taken based on prison PIC data was also used to further compare these three 

imputation methods of estimation.  

 

 From the prison data set and simulation study for this particular case, we can 

conclude that the Cox model proved to be feasible and works well in terms of 

estimation the survival function, likelihood ratio test and their P-value. In additional 

to that, based on imputation techniques, the mean and median showed better results 

with respect to estimate of the survival function.  
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CHAPTER 1: INTRODUCTION 

This chapter will present a background about the survival analysis, different 

censoring schemes, the specific problem and objectives of the study in addition to 

some description about Cox model.  

1.1 Background 

Statistical problems emerge when examining the occurrence of events and the 

occurrence of time in a population. An event in this context involves the qualitative 

transformation of the observed person occurring at a specific period (Emmert-Streib 

& Dehmer, 2019).  In the health care settings, the event can be the time until death or 

cure of a person, computed from a specific treatment or disease onset. Statistical 

analysis in these contexts entails survival analysis that is used when examiners are 

interested in the time until an event occurs (Emmert-Streib & Dehmer, 2019). 

Survival analysis includes different analysis techniques for examining data with time 

as the outcome variable. Time in these instances corresponds to the period until a 

specific event occurs. Examples of events include heart attack, death, product wear 

out, or parole violation, etc. 

Based on these different examples, it is apparent that different fields, such as 

behavioral sciences, social sciences, marketing, engineering, medicine, and biology 

use survival analysis (Zhang et al., 2013). For example, the sample size in a clinical 

trial can be diagnosed by survival analysis when the test requires the comparison of 

the mean or a specific percentile concerning the survival distribution (Emmert-Streib 

& Dehmer, 2019). The basis of the approach to this test is the accelerated failure time 

model, which can be applied directly to design reliability studies when comparing the 

reliability of differentially manufactured products. Survival analysis can also be used 

to examine the failure of mechanical devices and among couples treated for fertility 
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issues to model the time to pregnancy. Another instance of the application of survival 

analysis is in engineering in which it can be used to test the durability of electrical or 

mechanical components where the researcher use the method to track items and the 

life span of material to predict the reliability of the product (Fauzi et al., 2015) these 

examples show that survival analysis explores and simulates the changes in survival 

probability at the time of the event. Estimation is based on data of participants 

offering information about the event time. The exact starting point and ending point 

are not required since observations do not always begin at zero as a participant can 

enter into the study at any time. Time is relative where all participants are placed to a 

common initial point in which the time is zero and all participants have survival 

probabilities equal to one (Emmert-Streib & Dehmer, 2019). 

The uniqueness of survival data concerns that not all participant’s experience 

the event (like a heart attack) towards the end of the observation time, which means 

that for some patients their real survival times will be unknown.  In turn, this creates 

the censoring phenomenon, which must be considered during the analysis to ensure 

valid inferences. Censoring is a factor that complicates the estimation of survival 

analysis as it causes incomplete information. Censorship, nevertheless, allows the 

examiner to compute lifetimes for participants who have not been subjected to an 

experiment. Notably, the participants who did not experience the targeted event must 

be part of the investigation because eliminating biases influence the outcomes of 

every participant experiencing the targeted event. They must be included in which 

they can be separated from those who experienced the targeted event through a 

variable indicating censorship. 

Survival analysis uses different censoring techniques. It is crucial to note that 

censoring is independent of the future importance of the threat for a specific 
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participant (Schober & Vetter, 2018). Right censoring occurs when the participant 

enters at the beginning of the examination and terminates before the targeted event 

happens. The participants may not experience the event by staying longer than the 

examination period or may not have been part of the examination in which they leave 

early without experiencing the event. Left censoring occurs when the analyst fails to 

observe the birth event. It is vital to mention the idea of length-biased sampling that 

happens when the study objective is to analyze the participants who experienced the 

event already to examine whether they will undergo the event again. Interval 

censoring is experienced when the period between observations or the follow-up time 

is discontinuous, which can be quarterly, monthly, or weekly. Left truncation or late 

entry happens when participants may have experienced the targeted event before 

being examined. 

Partly interval-censored data entail interval-censored observations and exact 

observations, which mostly occurs in health studies and clinical trials requiring 

periodic follow-ups with patients (Guure, et al., 2006). Here, the failure period 

is determined precisely for estimated participants simultaneously with the rest at the 

fixed period (Kim 2003; Azzah and Ibrahim 2013; and Zyoud et al., 2016). 

 It is also crucial to be aware that most survival times are skewed, which limits the 

effectiveness of analysis techniques that are based on normal data distribution. In turn, 

this emphasizes the importance of examining statistical techniques for analyzing time-

to-event information. Examples of these techniques include parametric methods such 

as; Weibull, exponential, log-logistic, and log-normal, Gompertz given by George et 

al., (2014) and non-parametric such as; Kaplan Meier, Nelson-Alan, life table, and 

semi-parametric such as; Cox proportional hazard (Abbas et al., 2019). These models 

impose varying distributional propositions on the hazard. The final decision, 
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nevertheless, regarding their application is based on the specific research question, 

how the model fits the actual data, and other practical matters such as challenges 

when approximating with the available interpretability and software. Parametric 

models, for example, assume that a survival function is based on a parametric 

distribution such as a Weibull distribution or an exponential distribution. The benefit 

of parametric models is to make the survival functions smooth. It is easy to suggest 

the behavior of these models rather than using a technique to make the functions 

smooth after initially estimating the function. Covariates can also be integrated easily 

in a parametric technique and inference method (Abbas et al., 2019). The only 

drawback is that parametric models must describe the data effectively, which may be 

true or untrue since methods such as visualization techniques or hypothesis testing 

may be required for testing the model (Abbas et al., 2019). Non-parametric models 

entail non-parametric density assessments in the availability of censoring. The benefit 

of the model lies in its flexibility and the ability of its complexity to develop with the 

observation numbers. The main drawback of the model is concerning the difficulty in 

integrating covariates, which makes it challenging to explain how the survival 

functions of people differ. Another disadvantage is that survival functions are not 

smooth. The semi-parametric model deals with the integration of covariates issues. 

The model breaks the instantaneous risk or hazard into a non-parametric baseline that 

all participants share and a relative risk that explains how each covariate influences 

risk (Abbas et al., 2019). In turn, this leads to a time-varying baseline risk and enables 

patients to possess various survival functions in the same fitted model. The drawback 

of the model is that the survival function is not smooth. Besides, for correct inferences 

and good predictions, two propositions including proportional hazards and linearity 

between log-hazard and covariates must be satisfied.  
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This thesis aims at applying PHRM with PIC data in the social field rather 

than the medical or engineering fields.  

The researcher has officially received the approval of Dean of the faculty for 

the purposes of the study and support for the data collection. The research supervisor 

Dr. Faiz Elfaki has accompanied the researcher Miss Shaikha Ahmedi in a field trip to 

Management of penal and correctional institutions in Qatar to collect data for this 

study. After collecting all the required data, it was documented an excel sheet then 

transform into R-software. The collected data contained some information for 

criminal nationality, age, social status, education level gender, the crime and the time 

for instance in the prison and release time which is the response time 

1.2  Cox Proportional Hazard Regression Model (PHRM) 

The PHRM is a survival model used to analyse failure time data. Cox (1972) 

proposed a PHRM for the analysis of censored survival data that allows the inclusion 

of covariates. The hazard rate is, 

 

0( , ) ( )exp[ ( )]ih t z h t f z=    (1.1)  

 

where )(0 th  is the underlying hazard function, 1 1 2 2( ) ... T
i i i p ip if z z z z zβ β β β= + + + =

, iz  represent covariates (the covariates such as gender, age, type of treatments, etc.), 

and iβ ( 1,2,..., )i p= is the unknown regression coefficients. Cox (1972, 1975) 

obtained estimates of β  and asymptotic covariance matrix using a partial likelihood 

argument. Breslow (1974) proposed an estimate for the underlying hazards rate 

assuming that the hazard rate was constant between death times.  

1.3  Problem Statement 
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 Proportional Hazard Regression Model (PHRM) has received considerable 

attention in the statistical literature as many studies involve assessing of covariates in 

the presence of right-censored, left-censored and interval-censored. For example, in 

the medical field, in a study of patients with lung cancer, an individual could die from 

lung cancer (the event of interest) and some others individual still alive when study 

end. From industrial reliability, the failure is attributed to the malfunctioning of one of 

three components (motherboard, disc driver, or power supply) in a study of computer 

component systems. 

 Several approaches have been proposed when the failure time is known. A 

challenging twist to the problem arises when the failure time is unknown exactly but 

can be narrowed down within interval. In this case, there is a need to tackle such 

problems first in order to establish good inferences, or our inferences will not be 

reliable. 

 Significant effort has been done to consider Cox model, based on right 

censored failure time data oppositely to the effort based on interval censored data. 

However, to the best knowledge of this researcher, no one has considered the case of 

prison PIC data. This means that the research for PIC data is still ongoing. In this 

research it is proposed to study and develop a Cox PHRM based on prison PIC data to 

assess the effect of covariates on the model via imputation techniques.  

1.4  Research Objectives 

 The essential aim of this research is to develop a flexible method for prison 

partly interval-censored, and that incorporates explanatory variables information as in 

social applications, where most of the methodological work has focused on estimation 

of survival function without covariate adjustment. Hence, the major objectives of this 

research are: 
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1. To simplify Cox proportional hazard model under maximum likelihood 

estimation framework on the basis of prison partly interval-censored data via 

imputation techniques. 

2. Evaluating the effect of explanatory variables (covariates) on the models and 

the survival function.  

3. Compare the proposed model with existing model.  

4. Evaluating the performance of the proposed approaches using simulation data. 

5. Applying the proposed techniques to real prison partly interval-censored data. 

1.5  SCOPE OF THE THESIS 

This thesis is limited to use the cox-proportional hazard technique to fit a 

flexible model for prison partly interval-censored data, using several socio-

demographic variables. The literature review in chapter two shin the lights on several 

studies linked with partly interval censoring methods, cox proportional hazard 

regression models, and application studies related to prisons. In chapter three, which 

is the methodology, the Cox proportional hazard regression model and the maximum 

likelihood estimation which will be used to estimate the parameters are described. In 

chapter four, the real prison along with the simulation dataset will be analyzed. 

Finally, chapter five will summarize the conclusions from previous chapters and 

present suggestions for future research. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter will present a background about the partly interval-censored, Cox 

Model and its applications in addition to the literature review that provides some previous 

studies that have been done relevant to our study. 

2.1  Partly Interval-Censored (PIC)  

Peto and Peto (1972) mentioned and analyzed data comprising of either exact 

or interval-censored observations when deriving asymptotically efficient rank 

invariant test techniques to detect differences between two sets of independent 

observations. It is possible to correctly observe the failure times for a part of 

participants using this data while for the other participants the failure times happen in 

a specific time assessment (Nesi et al., 2015).  PIC data, thus, comprises of both 

exactly observed and interval-censored which mean that some targeted events are 

exactly observed while the remaining events stay within intervals (Fauzi et al., 2015; 

Wu et al., 2019). PIC data occurs mostly in situations that entail periodic assessment 

(Nesi et al., 2015). The Weibull distribution model is used to develop partly interval-

censored data (Fauzi et al., 2015). In a study to compare treatment survival functions 

using the imputation procedure for PIC data based on Weibull distribution assessment 

and established that the accuracy of the estimated sample size affects the power of the 

sample (Nesi et al., 2015).  

Partly interval-censored data models also require the identification of a sample 

and a control sample to allow for observations over a vector parameter to be made for 

both samples’ times. The proportional hazards model is mostly used in these cases for 

which established a asymptotic properties of a class of generalized log-rank tests 

based on PIC data (Lane et al., 1986; Zhao et al., 2008).  The model then produces a 

survivor function that estimates the probability of the survival periods in the future 
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(Lane et al., 1986). The term with observed events dominates the likelihood function 

for PIC data (Wu et al., 2019). Disregarding the interval-censored observations from 

the entire data set, nevertheless, leads to enlarged standard error and estimation bias 

(Wu et al., 2019).  

It is challenging to fit the correct model to PIC data because of factors such as 

violations of independence and linearity of the data, ignoring vital covariates in 

studies, which in turn affect variances, biases, and variances’ estimate of the 

parameter estimates. These factors compel researchers to approximate the model 

being fitted. Besides, fitting a model may raise both analytic and descriptive value, 

which emphasizes the importance of avoiding violating the assumptions to ensure that 

the truth value of the model is high (Binder, 1992). Imputation methods can also 

estimate PIC with non-parametric approximations (Zyoud et al., 2016). In their 

research the found that the best approaches in this regard entail mean and median 

imputation and random imputation as they produce better outcomes compared with 

other techniques. Other techniques that can be used to examine PIC such as maximum 

likelihood, Expectation Maximization (EM) algorithm, and multiple imputation 

method and etc. Another proposed technique to estimate functions for partly interval-

censored data is the semi-parametric Cox proportional hazards regression models and 

weighting technique model and the censoring complete model (Elfaki et al., 2013). In 

their studied also highlight the importance of the generalized missing data principle in 

the context of semiparametric models and the application of the generalized profile 

data for non-identically distributed samples. 

When examining a failure time distribution, it is vital to ensure that the sample 

comprises of both items with known failure time and items with only a lower bound 

of the failure time. The later items have a censored survival time. Observations that 
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have not failed by the end of the examination or those that are eliminated from the 

study for other reasons besides failure use censoring (Lane et al., 1986). When 

designing the required sample, it is crucial to consider the availability of ties between 

the survival times observed, which allows for the selection of a fitting model to the 

data in the study, and the time dependence of variables because the independent 

variable value stays constant over the study time interval (Lane et al., 1986). 

In this thesis, we will use PIC based on prison and simulation data sets that 

applied to survival model such as Cox model via imputation methods. 

2.2 Cox Proportional Hazard Regression Model (PHRM) 

Cox (1972) developed the PHRM to manage continuous time survival data. 

The PHRM refers to a technique for examining the effect of different variable on the 

period a specific event takes to occur (Liu, 2017). The assumption behind this model 

is that the core hazard rate, not the survival time, represents the covariates and 

independent variables’ function. The model as described in (1.1) and was presented 

by (Liu, 2017) as; 

 

𝑙𝑜𝑔 [ !(!!)
!! (!")

]  =  𝛽!𝑧! +  𝛽!𝑧! +  𝛽!𝑧! +⋯  𝛽! 𝑧!                      (2.1) 

 

Where the hazard function is ℎ(𝑡!) Which refers to the probability of the target event 

occurring at time 𝑡! assuming the participant survived at and beyond 𝑡!.  The baseline 

hazard is represented by ℎ!(𝑡𝑖) Which refers to the hazard of the respective 

participant given all independent variables are equal to zero,  𝑧!, 𝑧!…, 𝑧! represent 

covariates while β1, β2, β3,… βk  represent corresponding regression coefficients. 

The Hazard Ratio (HR) is used to interpret the model. HR refers to the projected 

hazard function based on two separate values of a predictor variable (George et al., 
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2014). For instance, an event can possibly occur if the HR is greater than 1 and less 

probable to occur if the HR is less than 1. The covariates vector is linked to the model 

in which β represents the unknown parameter and defines the covariates’ effects 

(Kumar & Klefsjö, 1994). The assumption concerning the multiplicative covariates’ 

effect and the baseline hazard rate means that the share of the hazard rates of two 

process variables experienced at time t concerning the set of covariates x1 and x2 

correspondingly stays constant regarding time and proportional to each other, which 

demonstrates why the model is referred to as the Cox proportional hazards (Kumar & 

Klefsjö, 1994). 

 Cox (1972) proposed the PHRM as mentioned in chapter equation (1.1) with 

considered being partly because the function for the partial likelihood used for 

inferences was considered a function of β (the vector of regression parameters). 

However, several researchers are not compelled to handle the baseline hazard 

function, which leads to efficiency as the resulting β estimator is equivalent 

asymptomatically to the β estimator offered by the complete likelihood function. The 

model also lacks underlying assumptions and can estimate the possible failure time, 

which makes it beneficial in predicting failures (Lane et al., 1986). The explanatory 

variables affect the model by multiplying the hazard )(0 th  by the function exp( )i izβ  

of the explanatory variables’ deviations from their mean values, which is the 

underlying assumption of the model (Lane et al., 1986). The exponential function 

exp( )i izβ  also simplifies the estimation of the vector of regression parameters (Lane 

et al., 1986). The model, nevertheless, has several assumption such as the true model 

differing from the traditional model through missing covariates, dependent 

observations, nonlinear exponential argument, hazard functions not being 

proportional, and the assumption that the process producing the censoring in right 
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censored data is separate from the remaining lifetime (Binder, 1992). The 

proportional hazards model is not a truly non-parametric model because of its 

reliance on the vector regression parameter.  Its baseline hazard function )(0 th , 

nevertheless, is considered to be random without the need for distributional 

assumptions to estimate it or β. The model is semi-parametric where exp( )i izβ the 

parametric part is and )(0 th  is the semi-parametric part, and exp( )i izβ is the 

independent variable function. The main assumption based on this model is that the 

independent variable does not change based on the time interval being used as it 

remains constant over time (Liu, 2017). The model has other assumptions. For 

example, the proportional hazard assumption states that in a regression-based 

environment, the hazard functions representing survival curves for two or more strata 

(identified through specific value selections for the interested study) must be 

proportional over time (constant relative hazard). Based on this assumption, the 

baseline hazard function is common to all participants in a study, which means that all 

participants have the same baseline risk (Liu, 2017).  

Compared to other discriminant analysis procedures, the PHM offers extra data about 

the possible time to an event offered by the model (Lane et al., 1986). The extra data 

is contained in the estimated survivor function for a given item with z as an 

independent variable vector.  

The PHM should be based on the design approach because violating the 

assumptions of the model will lead to estimates of β. The design-based approach 

model produces consistent estimate of the exact underlying parameters with few 

efficiency losses compared to a pure model if the model is universally true for all 

participants. The model-based approach, however, may lead to misleading outcomes 

if it fails in certain respects (Binder, 1992). If β is model free, which means that the 
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PHM assumptions do not limit it. When the underlying study participants follow the 

PHM the usefulness of β is enhanced, this in turn does not exempt the researcher from 

fitting and classifying the applicable explanatory variables (Binder, 1992). Due to the 

use of a hazard function the PHRM does not require the analyst to assume a specific 

survival distribution for the data (George et al., 2014). Studies find the baseline 

hazard to possess beneficial data because the baseline hazard rate is the reference in a 

survival model that shifts as a function of time (Royston & Lambert, 2011). The 

absolute effect of an exposure relies on the time since the origin and the size of the 

essential hazard rate even when the proportional hazard assumption is rational 

(Royston & Lambert, 2011).  

Bender et al. (2005) used the exponential exp( )i izβ distribution extensively to 

generate survival times in most simulation analysis, which leads to the 

underutilization of other distributions. The main reason for this is the lack of 

obviousness when generating survival times based on pre-specified PHRM 

measurements. In additional to that Bender et al. (2005) developed the general 

association linking the hazard and the survival time of the PHRM. 

Several researches used the model in their studied such as; Royston & 

Lambert (2011) developed relation that can generate survival times using any 

compatible distribution with the proportional hazards such as Gompertz, Weibull, and 

exponential distribution. Bender et al., (2005) used several practical situations that are 

flexible distributions than the exponential distribution when examining the features of 

the PHRM. 

George et al., (2014) used a stratified PHRM that can accommodate a different 

baseline hazard from stratum to stratum or fitting a model that entail time-varying 

covariates. A crucial issue about the PHRM concerns the understanding of the true 
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coefficients in which the impact of the covariates must be translated from the hazards 

to the survival times. The reason for this is that rather than the hazard function, 

individual survival time data are required by the software packages regarding the Cox 

model. It is easy to translate the coefficients from hazard to survival time in the 

presence of a constant baseline hazard function, which is why the exponential 

distribution is widely used. 

Vaida and Xu (2000) presented a PHRM with random effects in the log 

relative risk in which the effects affect the design matric subjectively. Their model is 

useful in examining clustered survival data. Also, Vaida and Xu (2000) extended the 

stratified models immediately in which the parameter numbers do not increase due to 

various baseline hazards based on the assumption that ties do not exist as the baseline 

hazards non-parametric maximum likelihood estimate (NPMLE) has masses at the 

observed periods only. 

Examining the underlying assumptions of the PHRM for all predictors 

examined in the model is vital to ensure accuracy. For example, studies recommend 

plotting the Schoenfeld residual versus time to evaluate the PHRM for a continuous 

predictor. If random scatters around zero appear in the Schoenfeld residual, then the 

assumption of the model is valid (Schober & Vetter, 2018). For categorical predictors, 

the Kaplan-Meier survival curves’ log-log transformation for various categories can 

be compared. The curves under the PHRM will be nearly parallel without intersecting 

after separating (George et al., 2014).  

Another important idea regarding the PHRM is that the covariates values can 

change with time, particularly in follow up situations. There are, therefore, two types 

of covariate, time-dependent and fixed. Fixed covariates occur if their values do not 

change with time, for instance race or sex. Time dependent covariates occur if the 



  

15 

 

difference between their values for two separate participants changes with time, for 

instance cholesterol in serum. Practically, some observations may occur 

simultaneously, which the classical PHRM cannot handle. In such case, alternative 

models can be used. The PHRM also faces the issue of collinearity. Fan and Li (2002) 

developed a smoothly clipped absolute deviation (SCAD) penalty in the PHRM to 

solve such issues. However, in this thesis the use of PIC data based on PHRM via 

imputations techniques. 

2.3  Applications 

Tripodi et al., (2010) examined whether being employed is related to criminal 

behavior for people freed from prison, particularly concerning the duration between 

the prison release and re-imprisonment , furthermore, it examined the relationship 

between employment and recidivism for parolees freed from prisons in Texas, 

whether being employed after being freed from prison is related with reduced 

potential for re-incarceration, and whether being employed is related with more time 

to re-incarceration. In their study, they analyzed administrative data from a random 

sample of 250 male parolees released from prisons in Texas among 2001 and 2005. 

They obtained pre-prison and in-prison information from the statewide data of the 

Executive Service of the Texas Department of Criminal Justice (TDCJ). They also 

received post-prison information from the Parole Services Department of (TDCJ) 

using the case files of the parolees. In their study later they analyzed the combined 

data for the selected participants. PHRM is used to analyze the impact of employment 

on re-incarceration over time. The model was sufficient for the study since recidivism 

did not occur for a part of the participants before data collection ended, which 

censored the data. The study found that while being employed is not related to a 

substantial reduction in the potential for re-incarceration, being employed is related to 
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a substantial amount of time to re-incarceration Re-incarcerated parolees who are 

employed spent more time away from crime in the community before going back to 

prison. 

The study by Benda et al., (2002) was about environmental factors that predict 

the survival of inmates in the community without experiencing recidivism. The 

purpose of the study was to detect the factors that predict the length of time graduates 

of boot camps remain in the community without being re-incarcerated. Specifically, 

the study sought to determine the dynamic and static factors that predict re-

incarceration or recidivism among boot camp graduates in the Department of 

Correction. In their study they selected 480 male participants in a boot camp in one 

southern state through questionnaires administered by a psychologist, and used the 

questionnaires to collect additional data for the study such as race, marital status, 

committed offences, return offenses, incarceration time, and age. Besides, that they 

obtained the ratio measurement level of recidivism concerning the survived days in 

the community. The study used the PHRM to assess the relative recidivism (hazard 

function) rate throughout the follow-up interval of three years based on the predictors. 

The PHRM was used because of its flexibility concerning the reliance of the re-

incarceration hazard on time and the ability to allow them to examine the impact of 

predictors on recidivism. The study found that factors such as the perceptions of 

inmates regarding boot camps as just an proper place to early release, resilience, 

future success expectations, peer association and influence, past criminal history, 

socio-demographic features, personal attributes, personality, and age at first arrest 

strongly predicted recidivism.  

The study by Benda (2003) was about recidivism among boot camp graduates 

involving male non-violent offenders. The study also sought to determine whether 
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adults in adult boot camps early starters and late starters experienced a different 

criminal rate of recidivism, besides, to examine the crucial care giving factors to 

understand the extent to which they predict criminal recidivism and explore the 

differences in impacts on criminal behaviors. 

Their research involved 601 male participants graduates in the study from the 

only boot camp in one southern state and obtained various features of the participants 

such as age, number of children, legal annual income, education, race, marital status, 

employment status, family structure, gun carriage, drug selling, and recidivism 

through questionnaires. The research also determined the ratio of the measurement 

level of recidivism for the survived days in the community. The study used the PHRM 

to examine the recidivism hazard rate (parole or arrest violation) of different aspects 

of developmental and general models. The analysis was based on the age at which the 

participants began engaging in illegal acts. The study found caregiver factors to be 

inversely related to the recidivism hazard while carrying weapons, drug sales and use, 

gang membership, peer relationship with criminals, social skills’ deficits, and low 

self-esteem were found to be positively related to the recidivism hazard. The results 

were observed irrespective of the age at which participants began engaging in 

criminal activities.  

Another study by Benda et al., (2005) was about the life-course theory factors 

that predict recidivism, the gender differences in the predictors, and issues about the 

impact of boot camp. The study aimed to investigate, determine and explore potential 

gender differences in the components of the life-course theory that predict recidivism; 

and recidivism abuse that happens at various life span stages; in addition to open 

discussions regarding the potential detrimental impacts of boot camp.  In their study 

they selected 601 male and 120 female graduates from the boot camp in one of the 
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southern states and used two questionnaires to obtain information such as age, 

education, age for the first arrest, race, childhood physical and sexual abuse, existing 

living status, job status, gang membership, weapon carriage, and drug selling. The 

PHRM was used in their study to analyze the gender differences while the non-

parametric examination of survival curves was used to explore the time until the first 

parole violation or felony arrest of participants using standard life table techniques. 

The study found that specific positive views about the boot camp program were 

related to low recidivism hazard rates. Present sexual assaults, adolescent physical 

and sexual maltreatment, and sexual abuse during childhood were also associated with 

high recidivism hazard rates. Ameliorating experiences such as full-time jobs and the 

presence of a conventional partner substantially reduced the hazard rates of many 

examined predictors.  

Cloyes et al., (2010) studied the rates of recidivism among offenders suffering 

from a mental illness and who are returning to prison. Also, in their study they 

engaged in the study to explore further issues regarding whether specific prisoners 

with serious mental illness exist at the State prison in Utah, the criteria to be used in 

identifying this population, and the way to compare with other prisoners. The 

objective of their study was to determine, measure, and explain the part of the prison 

population in Utah State Prison between 1998 and 2002 that met the Severe Mental 

Illness (SMI) criteria and to compute time from prisoner release to re-incarceration for 

SMI offenders compared to non-SMI offenders. The researchers involved all 

individuals released from the Utah State Prison from January 1, 1998, to December 

31, 2002, together with all release events that included 14, 621 real meaningful 

release events and 9,245 unique cases, and also conducted a systematic review of 

records of all identified cases related to SMI and gathered data concerning mental 
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health intervention in prisons, prison resource use and management, and 

demographics. The study used the Kaplan-Meier techniques to perform the survival 

analysis in which time from prison release to re-incarceration for the SMI group was 

compared to that involving the non-SMI group. The study found substantial 

differences between the non-SMI and SMI group were due to factors associated with 

resource use and clinical symptoms, not demographics, release conditions, or offense 

features. The study also found that SMI offenders had a higher rate of recidivism. 

Hill et al. (2008) engaged in a study to identify criminal risk factors by 

examining forensic psychiatric reports about sexual homicide perpetrators in 

Germany. The study sought to collect data about the risk factors that predict future 

sexual homicide; to explore the legal outcomes of the sexual homicide, assess the 

factors that affect release from prison or a forensic hospital, evaluate the rates of 

criminal recidivism, and determine the risk factors for violent nonsexual and sexual 

reoffending. The researchers assessed court reports on 166 men who had been 

involved in a sexual homicide for the period between 1945 and 1991 to identify 

clinical, criminal, and socio-demographic factors. The study also examined the 

German federal criminal records for follow-up information regarding the 

incarceration duration in a forensic hospital or prison following the last sexual 

homicide and regarding reconvictions and further detentions for 139 offenders. The 

study used the Kaplan-Meier technique for survival analysis to evaluate the influence 

of risk factors on the potential to be released and to measure rates of recidivism 

following release as a function of time at risk. The main findings of the study were 

that high sexual recidivism was associated with young age at the sexual homicide 

period while past nonsexual and sexual delinquency, high scores in risk evaluation 

tools, and psychopathic symptoms led to increased non-sexual violent recidivism. The 
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study also found that high recidivism rate with violent re-offenses was related to age-

based factors such as young age during the first sexual offense, at homicide, and 

during release and detention duration. 

The study by Jung et al., (2010) was about the rates of recidivism and survival 

time among male ex-inmates freed from the Allegheny County Jail in 2003. The study 

objective was to examine recidivism based on racial disparity among ex-inmates and 

to explore the relationship between recidivism and race with ex-inmates. The study 

also, compared recidivism rates across race by first generating inmate historical 

information concerning their entry and release date documentations. A sample of 

12,545 participants was included in which 46.9 per cent were black while 53.1 per 

cent were white. The study used the Kaplan-Meier involving log-rank tests and the 

PHRM to explore whether black ex-inmates recidivated within a shorter period than 

white ex-inmates. The Kaplan-Meier technique compared the survival curves across 

race while the log-rank test identified the statistical significance of the compared 

differences. The PHRM investigated racial differences in the risk of recidivism. The 

study found that the rate of recidivism for three years stood at 55.9 per cent. Black 

men were also found to experience recidivism at a higher rate compared to white men. 

The survival analysis also demonstrated the existence of racial disparity in recidivism 

and the recidivism rate of black male to be within a shorter period than that of the 

white men. The study also found the covariates and interaction impacts of a race to be 

substantial. 

Mackie et al. (2001) studied post-transplantation alcohol consumption and the 

risk factors related to recidivism. The objective of the study was to compare survival 

rates for participants who experienced transplantation for ALD with participants who 

experienced transplantation for other kinds of chronic liver illnesses. The study also 
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sought to evaluate post-transplantation consumption of alcohol, assess the existing 

screening procedure, and evaluate the potential risk factors that can be used to identify 

patients at a higher risk of recidivism. In their study, also they used a self-report 

questionnaire to evaluate pre-and post-transplantation alcohol consumption and 

patient notes to examine recidivism risk factors. The study sample comprised of 49 

participants who experienced transplantation for Alcoholic Liver Disease (ALD) 

between May 1996 and November 1999 and 49 participants who experienced 

transplantation due to non-alcohol induced chronic liver illness for comparison 

objectives. The study used the Kaplan-Meier technique to determine survival rates for 

1- and 2 years while the log-rank test compared the rates. The study found high rates 

of recidivism, even though most participants did not drink heavily at a damaging 

level. The study also found that participants in the ALD group who consumed alcohol 

took a long time to do so in comparison to participants outside the ALD group, even 

though participants who returned to heavy drinking in both groups did so rapidly. 

Women were also found to experience low recidivism rates than men while age and 

socioeconomic status had no significant effect. Divorce was the only social risk factor 

that significantly influenced recidivism rates. 

The study by Ostermann (2015) was about the post-release life of all former 

inmates using the existing information for those freed from prison in 2006, in New 

Jersey. The study sought to examine the performance of former inmate in their 

transition back into the community. In additional to that the study also, used three 

recidivism indicators including technical parole violations, a conviction for new 

crimes, and arrest for new crimes, and grouped participants into sets based on the 

release mechanism experienced such as unconditional, mandatory parole, and 

discretionary release. The study used the PHRM to separate the impact of parole 
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supervision while controlling for identified post-release recidivism predictors. The 

study found that inmates freed to supervision after a three-year follow-up engaged 

less in new offenses compared to those freed unconditionally. A high percentage of 

paroled inmate’s recidivated immediately after being released.  

Rainforth et al., (2003) examined recidivism rates among former inmates who 

learned about the Transcendental Meditation (TM) technique in a prison in California. 

The study sought to explore participants from the Bleick and Abrams study who 

incarcerated at Folsom Prison by tracking their re-offending rate for 15 years 

following their release. 120 inmates at Folsom Prison learned the TM technique 

between 1975 and 1982. The inmates had been paroled by October 1982. Moreover, 

the study also, selected 128 non-meditating participants as the control group, and 

obtained extra background and demographic data for both participants including rule 

violations before entering the study, period served during the considered term, past 

commitment record, age at parole, age at first commitment, age at first arrest, drug 

abuse history, military discharge and service, employment history, educational 

achievement, IQ, marital status, and ethnicity. PHRM was used to estimate the 

relative decline in recidivism risk as a result of treatment to measure the size of the 

treatment impact. The study also used a split population technique based on the 

Weibull distribution to describe the data for both groups in the study. The study found 

that TM led to permanent rehabilitation instead of just postponing the commencement 

of re-offending. The TM group also experienced less severe re-offending compared to 

the control. TM combined with group therapy significantly reduced recidivism 

compared to TM alone and group therapy alone. 

However, from the above applications and to the best of our knowledge, no 

one has considered the case of prison PIC data. This means that the research for PIC 
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data is still ongoing. In this study, PHRM will be used based on prison PIC data to 

assess the effect of covariates (such as age, gender, social status, nationality, previous 

arrested, and religion, etc) on the model via imputation techniques.  
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CHAPTER 3: METHODOLOGY 

3.1  Introduction 

Cox Proportional Hazards Regression Model (PHRM) is one of the most 

popular models being used extensively in survival analysis. This model envisages the 

assessment of the significance of various covariates in the survival times of subjects 

or individuals through the hazard function.   

A well-recognized technique for analyzing survival data is Cox model, is 

based on a modelling approach and aims at exploring the effects of several variables 

on survival simultaneously. The Cox Model analyses the survival of patients in the 

clinical trials and the model facilitates to isolate the effects of treatment from the 

effects of other variables. By theoretical deduction, the model can also be used, if the 

other variables, which cannot be easily controlled in a clinical trial but affect the 

patient survival apart from the treatment, are also known.   

Let T be a non-negative random variable representing the failure time of an 

individual in the population. Generally, the values of T have a probability distribution 

that is Probability Density function (PDF) ( )f t , however, the cumulative distribution 

function (CDF) is: 

 

0

( ) ( ) ( )
t

F T P T t f u du= ≤ = ∫     (3.1) 

 

Which gives the probability that the event has duration t .  The survival function ( )S t

is defined as the complement of the CDF of T . That is; 
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( ) ( ) 1 ( ) ( )
t

S t P T t F t f u du
∞

= > = − = ∫    (3.2) 

 

The survival function gives the probability of being alive at duration t . 

( ) 1S t =  at 0t = and ( ) 0S t =  at t = ∞ , which indicate that the survival function 

begins at ( ) 1S t =  and as t  increases to ∞ , decreases to 0. 

Likewise, the hazard function is an important concept in survival analysis 

which we can say is a kind of density function ( )f t . For which it is conditional while 

( )f t is an unconditional probability.  

The hazard function also known as instantaneous failure rate which is defined 

as the probability that an event lies in an interval ( , )t t t+Δ given that it has not 

happened prior to t as follow: 

 

( / )

0
( ) lim P t T t t T t

tt
h t ≤ < +Δ ≥

ΔΔ →
= ,  0t >   (3.3) 

 

The above function define as the probability of a person who dies in a short interval 

( , )t t t+Δ where the individual has already survived the time t . 

By integrated the hazard function we obtain the cumulative hazard function which is 

comparatively easier to estimate non parametric models than hazard and density 

functions. That make the important of the hazard function (Brostrom, 2012; and Lee 

et. al., 2003). The cumulative hazard function is given as; 

 

                                         
0

( ) ( )
t

H t h u du= ∫                                (3.4) 
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The conditional probability in the numerator of equation (3.3) may be written 

as the ratio of the joint probability that T is in the interval ( , )t t t+Δ and T t> , to the 

probability of the condition T t> . The former may be written as ( )f t dt for small dt , 

while the latter is ( )S t by definition. Dividing by dt  and taking the limit, we have; 

 

( ) (1 ( )) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

d d d
dt dt dtF t S t S tf t S t

S t S t S t S t S th t
− − ʹ−= = = = =                 (3.5) 

 

Equation (3.5) suggest that; 

 

( ) ( )d
dth t S t= −                                   (3.6) 

 

Then; 

 

0

log ( ) ( ) tan
t

S t h u du cons t= − +∫                      (3.7) 

 

The constant in (3.7) will be equal zero provided that (0) 1S =  , then (3.7) became; 

0

( ) exp ( )
t

S t h u du
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫   (3.8) 

 

By substitute (3.8) into (3.5) we have; 

 

0

( ) ( ) ( ) ( )exp ( )
t

f t h t S t h t h u du
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦
∫          (3.9) 
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As shown, the hazard and the survival functions are mathematically associated. 

Because of convenience and practicality, the hazard function is used in the regression 

model. Cox (1972) interpreted the association between the hazard rate and covariates 

via the following model; 

 

0
1

ln[ ( )] ln[ ( )]
p

i i
i

h T h t z β
=

= +∑                      (3.10) 

 

Equation (3.10) can be written as; 

 

 1
0( ) ( )

p

i i
i
z

zh t h t e
β

=
∑

=                           (3.11) 

 

Where 0 ( )h t  , iz and  iβ   are defined in equation (1.1). Therefore, the regression 

model as a linear form based on equation (3.11) is given as: 

 

1 1 1 2 2
0

( )
( ) .....

p

i i
p pi

z
zh t z z

h t e e e e
β

ββ β=
∑

= = × × ×           (3.12) 

 

Equation (3.12) represent the prime assumption of PHRM that is the 

proportional hazards that is defined by ( )h t  and 0 ( )h t  from the two independent 

distribution and 𝑒 !!!!
!
!!!  is positive proportional constant that does not depend on t . 

However, the proportional hazards would not be used for all the cases. This 

assumption must always be carefully examined and this could be done by using some 

methods such as Schoenfeld residuals.  
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The predictive form of PHRM can be written in terms of the survival function as; 

 

exp[ ( )]
0( / , ) ( ) if z

iS t z S tβ =  

 

where 0 ( )S t is the baseline survival function at time t , which corresponds to the 

baseline hazard 0 ( )h t  as 0
0

( ) exp[ ( ) ]
t

S t h u du= −∫ , ( / , )iS t z β  is the probability of 

surviving beyond time t  given predictors and ( )if z  is defined in equation (1.1). 

An interesting characteristic of proportional hazards model is that to estimate 

the regression coefficients, only the ranks of the failure times are needed. The real 

failure times are only used to generate the ranks. Therefore, regardless of whether the 

time values are in days, months, or years, the same regression coefficient estimates 

will be achieved. 

The PHRM is a regression model for time to event data assuming that the 

covariates (age, gender, treatment, etc) will affect the survival times. It enables to test 

the difference between survival times of different groups of patients allowing other 

factors (covariate) to be taken into account. The two term 0 ( )h t and β , PHRM is 

called a semi parametric model as 0 ( )h t is non parametric and β is parametric part. 

Moreover, the parametric part in equation (3.12) need to be estimated. In PHRM the 

unknown parameters iβ  ( 1,2,.. )i p= can be estimated by partial likelihood (Brostrom, 

2012).   

3.2  Maximum Likelihood Estimation (MLE) 

Maximum likelihood estimation begins with writing a mathematical 

expression known as the likelihood function of the sample data. Also, the MLE is a 

numerical technique used for estimating the unknown parameters of a given model 
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(distribution), using some observed data by maximize the probability of observing the 

data from the joint probability distribution given a specific probability distribution 

and its parameters in MLE is that their variances may be approximated routinely by 

the inversion of the observed information matrix. 

Cox and Oakes (1984) introduced the likelihood function by 

 

∏
=

−−=
n

i
ii

ii tFtfL
1

1 ])),(1(),([)( δδ βββ  ,  (3.13) 

 

where  ),min( cTt ii = , 

 

    
⎩
⎨
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>
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=

cT
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i

i
i ,0
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δ    

 

and ( 1,..., )iT i p=  is a sample from a random variable T  having a pdf  given by 

),( βtf , and a CDF given by ),( βtF ; where β  is the parameter vector and c  is the 

censoring constant. 

The estimator β  is β̂  which is the point in the parameter space that 

maximizes the likelihood function. The MLE is invariant under parameter 

transformation. Let a vector of parameters be ),...,( 1 pβββ = ; suppose that )(βζ  is a 

function of β , not necessarily one to one or differentiable. Then, the MLE of )(βζ is 

)(ˆ βζ , is given by )ˆ(βζ , where β̂  is the MLE of β . 

The MLE is asymptotically sufficient. This can be seen by expanding the log-

likelihood function in a Taylor series. The resulting expression for the density 

function can be shown to have the asymptotic factorization given by  
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⎭
⎬
⎫

⎩
⎨
⎧ +−ʹ−−= )1()ˆ)(()ˆ(
2
1exp)ˆ,(),( 0 poItftf βββββββ   (3.14) 

where β̂  is the maximum likelihood estimator of β , )1(po  a term that approaches 0  

and )(0 βI  is the Fisher information matrix given by; 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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∂−
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LEI
ββ
β

β
))(log()ˆ(

2

,0  pji ,...,1, =    (3.15) 

The factorization given by equation (3.14) establishes the asymptotic 

sufficiency of the maximum likelihood estimator (Cox and Hinkley, 1974). This 

means that, asymptotically, the estimator β̂  contains all the information in the sample 

about β  which explains the good asymptotic properties of the MLE. 

3.3  Computation of Maximum Likelihood Estimator 

Taken the log of equation (3.13), we have;  

 

)(log)( ββ Ll =     (3.16) 

 

If the first partial derivatives of equation (3.16) exist and the MLE does not occur on 

the boundary of the parameter space, then, the estimator is the solution of the system 

of simultaneous equations given by  

 

0)( =
∂

∂
β

β
l ,                (3.17) 

 

Also, the first derivative of )(βl  is also known as the score vector defined by ).(βU   
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The maximum likelihood is the solution of  

 

0)( =βU     (3.18) 

 

Generally, using the EM algorithm or the Newton-Raphson methods can solve 

equation (3.18)  

3.4 Estimation in PHRM  

Assume that  1 2, ,...,i pt t t t=  be the failure times (release time in our case) with 

one failure at each time and let ( )iR t  be the set of subjects at risk at time it , who are 

stay in jail and under observation just before t . We indicate with i  the label of the 

subject who fails at it  so that its vector of covariates is z . Then the full likelihood is;  

 

1 ( )

( , )( ) ( )
( , )

i

p
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i
i ii R t
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From equation (1.1) we have; 
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The baseline hazards we cancel out, then we have the final form of partial likelihood; 
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The log partial likelihood is given by; 

 

1 ( )

exp( )( ) log ( ) log[ ]
exp( )

i

Tp
i
T

i ii R t

zl L
z

β
β β

β= ∈

= = ∏∑
                (3.21) 

 

where ( )l β  indicates that a function depends on the unknown parameters β , the 

values of z  being known. The large sample properties of the maximum likelihood 

estimators of β  based on equation (3.21) have been shown to be the same as those of 

any estimator from complete likelihood (Cox, 1975; Tsiatis, 1981; Andersen and Gill, 

2002). It is worth mentioning that equation (3.21) was given the name “partial 

likelihood” by (Cox 1975), as he derived the full likelihood ( )L β  based on equation 

(1.1), and showed that inference on β  could be made using ( )l β , which coincides 

with that found in equation (3.21), and depends on β  only. In large samples, the 

distribution of β  can be approximated by a normal distribution with the score vector, 

which is estimated by maximizing the likelihood from the first derivative, and a 

variance-covariance matrix, which is estimated from the second derivative of the 

likelihood function. 
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The score function is defined as the first derivative of equation (3.22) shown as; 
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Summing equation (3.16) over all failure times, we have the pth  component of the 

score )(βU  
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By taking the second derivative of equation (3.22), an expression is obtained which 

has the form of a variance. For example, the derivative of (3.23) with respect to pβ  

is; 
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   (3.25) 

 

The negative value of equation (3.25) is the partial likelihood observed 

information matrix ( )I β . The  inverse of ( )I β  which is evaluated at β̂ , that is 

)(1 β−I , is the estimated covariance matrix of β̂ . Equation (3.25) is also known as 

minus the Hessian Matrix is used to produce the standard errors for the regression 

coefficients. Based on evaluated β̂  the maximum partial likelihood estimator, then 

asymptotically 1
0

ˆ ˆ( , ( ))N Iβ β β−: , where is the inverse of information matrix at 

ˆβ β=  at 0β is a true value.  
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3.5 Likelihood Ratio Test (LRT) 

As a goodness-of-fit test, the likelihood ratio test (LRT) will utilized to 

compare between two models. In other words, a complex model will be compared to a 

simpler model in order to find out that it fits the dataset better or not. For a large 

sample size, the distribution of the LRT is approximated by a chi-square distribution. 

The degrees of freedom of this distribution is equal to the difference in the number of 

coefficients in two models. This test is defined as: 

 

𝐿𝑅 = −2 𝐿!"#!$% − 𝐿!"## = −2 ln
𝑙!"#!$%
𝑙!"##

 

 

The −2 in 𝐿𝑅 equation adjusts the test in a way that the chi-square distribution can be 

used to approximate the distribution of the test. 
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CHAPTER 4: RESULTS AND ANALYSIS 

In this chapter, we will illustrate the implementation of the methods discussed 

in earlier chapters using two data sets. The first one is prison data, the second one is 

from generated data. All calculations were computed using R software. 

4.1 Prison Data  

We applied the proposed method to the modified the real prison data. The data 

consist of 1730 criminals with variables such as age, gender, social status and 

nationality. To apply this data set to survival study, we consider the release from 

prison as event of interest. Then those is not release, we treat them as censored. This 

study was used to apply the survival methods to social studied as well to implemented 

to compare the variables in the data sets which have more effective in a crime. Also, 

in this study we implemented to compare the effects in crime for; 30 years or older to 

below 30-year-old based on age variable, for marriage to non-marriage based on 

social status variable, for male to female based on gender and for Gulf to other based 

on nationality variables. 

In order to set up the data as the partly interval censored data, for instant we 

set up for 30 years or older 655 observation as right censored, 550 as interval 

censored and 525 as exact. Likewise, for below 30 years older the set up to be 332 

observation as right censored, 890 as interval censored and 508 as exact. We also 

following same scenario for other variables. We consider 20 months as interval 

censored. 
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Table 4.1 shows the result based on our model mentioned above the data set. 

The results show that the variables age, gender and social status are highly significant 

compare to the nationality variable with respect to the Likelihood Ration Test (LRT) 

and their p-value. Occupancy was found to be higher between the ages of 30 and 

above relative to younger prisoners, which is shown in Figure 4.3. The study also 

indicates that males commit more crimes compared to females, as shown in Figure 

4.4. 

Figure 4.2 shows that there is significant different between married and single 

for the social status in interval of more than 10 month to 250 months. In additional to 

that single have longer crime compare to married as shown in the Figure 4.2. For the 

nationality variable, there is no significant different between Gulf nation and others 

nation as shown in Figure 4.1. Note that the significance level we consider in this 

analysis is 0.05. 

These results indicate the age, gender and social status are strong factors effect 

to commit crimes. Figure 4.3 shown the younger prison (less than 30 years) commit 

slightly more crimes compared to prisoners have age more than 30, males commit 

more crimes compared to females, as shown in Figure 4.4 and the single prisons have 

longer crime compare to married as shown in the Figure 4.2. 

 

 

Table 4.1: The result from Cox Model based on real data sets. 

Variable  Coefficient  Exp(Coef)  SE  LRT* (P-value) 
Nationality 
 

-0.17853 0.83560 0.07285 6.00 (0.01431) 

Social Status 
 

-0.26010 0.77097 0.07417 12.29 (0.00046) 

Age -0.13351 0.87502 0.02613 24.33 (6.81e-4) 
Gender -1.28100 0.27800 0.012010 30.5 (3.27e-08) 

LRT*: Likelihood Ratio Test 
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Figure 4.1: The survival function for Nationality (Gulf and others) 

 

 

 

 
Figure 4.2: The survival function for Social Status (Married and Single) 
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Figure 4.3: The survival function for Age (30 years or older and younger than 30 

years) 

 

 

 
Figure 4.4: The survival function for Gender (Male and Female) 
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4.2 Simulation Data  

A simulation study can be defined as a technique for performing computer 

experiments involving certain types of mathematical and logical models explaining 

the behavior of a particular system (Rubinstein, 1981). Simulation has been used most 

widely in statistics to analyze and research the conduct of statistical procedures, in 

particular when the problem cannot be solved analytically or when an analytical 

solution is not easy to work with. 

The technique consists of setting up a large number of samples. The samples 

are then individually reckoned in terms of statistics of interest, and the overall 

statistics of interest is used to study distribution properties. The simulations can also 

be used to generate estimates of the mean, variance, coverage probability of 

confidence intervals. In this simulation study, the objective is to compare the survival 

function that obtained from imputation techniques based on nonparametric, 

semiparametric, and parametric models.   

In this section, we present our published manuscript about the analysis of our 

model using simulation data sets but will be here in more details. Note that the 

materials of this section have been reproduced from our article by Shaikha et al., 

(2020). 

In order to examine the influence of the Cox model on this prison data set and 

to compare the variables in the data sets, a simulation analysis was carried out on the 

basis of a prison real data set. (that have been mentioned in section 4.1 in this thesis). 

We generate data based on the distribution of Weibull since we find that the 

distribution of Weibull is suitable for real data (Real data histogram graphics were 

found to be similar to Weibull distribution curves relative to other distributions). For 

each variable, the sample was taken 1000 times. (age, gender, social status, and 
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nationality). 

 

Firstly, to generate the data for the variable age (30 years or older and below 

30 years) we used the mean and standard deviation as -0.13351 and 0.02613 based on 

different percentage of exact observation (0%, 25%, 50%, and 75%) in the PIC data.  

We used the left point, mean and median imputations against the exact observation 

based on our Cox model to obtained estimated survival function for the two groups of 

age variable that is 30 years or older and younger than 30 years. The estimates 

approach in Figure 4.7 and Figure 4.8 which is shown similar results compared with 

the one obtained by left point. However, the group younger than 30 years develops 

more crime earlier than those in older than 30 years, suggesting that our left point 

approach provides an acceptable approximation to the estimate, when we have more 

exact in the data compare when we have less exact as shown in Figure 4.5 and 4.6. 

The mean imputation is used to obtain the estimated survival function for the 

two groups of age variable that is 30 years or older and younger than 30 years against 

that exact data with different percentages based on our model mentioned in chapter 3, 

as shown in Figures 4.9, 4.10, 4.11, and 4.12. The Figures shows that the two groups 

of age variables have similar results as compared with the one obtained by exact data 

with different percentages, which indicate that our mean point are better. Similarly, 

the result obtained by using median imputation it looks similar to the one obtained by 

mean point as shown Figure 4.13, 4.14, 4.15 and 4.16.  

In summary, the result obtained by our methods that is; left, median and mean 

imputations for exact observation more than 0% percentages are significant with 

respect to P-value that shown in Table 4.2. Moreover, the result obtained by mean and 

median imputations are better than the one obtained by left imputation especially 
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when we have more exact observation in PIC data (Table 4.2 and Figures 4.9 to 4.16).  

 

 
Figure 4.5: Estimated survival function obtained by left point with 0% exact data for 

age variable (30 years or older vs younger than 30 years) 

 
 
 
 

 
Figure 4.6: Estimated survival function obtained by left point with 25% exact data for 

age variable (30 years or older vs younger than 30 years) 
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Figure 4.7: Estimated survival function obtained by left point with 50% exact data for 

age variable (30 years or older vs younger than 30 years) 

 

 

 

 
Figure 4.8: Estimated survival function obtained by left point with 75% exact data for 

age variable (30 years or older vs younger than 30 years) 
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Figure 4.9: Estimated survival function obtained by mean point with 0% exact data 

for age variable (30 years or older vs younger than 30 years) 

 

 

 
Figure 4.10: Estimated survival function obtained by mean point with 25% exact data 

for age variable (30 years or older vs younger than 30 years) 
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Figure 4.11: Estimated survival function obtained by mean point with 50% exact data 

for age variable (30 years or older vs younger than 30 years) 

 
 
 
 

 
Figure 4.12: Estimated survival function obtained by mean point with 75% exact data 

for age variable (30 years or older vs younger than 30 years) 
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Figure 4.13: Estimated survival function obtained by median point with 0% exact data 

for age variable (30 years or older vs younger than 30 years) 

 

 

 
Figure 4.14: Estimated survival function obtained by median point with 25% exact 

data for age variable (30 years or older vs younger than 30 years) 
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Figure 4.15: Estimated survival function obtained by median point with 50% exact 

data for age variable (30 years or older vs younger than 30 years) 

 
 
 
 

 
Figure 4.16: Estimated survival function obtained by median point with 75% exact 

data for age variable (30 years or older vs younger than 30 years) 

 

 



  

47 

 

Table 4.2: The result from Cox Model based on simulation sets for Age variable. 

 Imputation Coefficient Exp(Coef) SE P-value LRT* 
0%Exact Left-point -0.11864 0.88813 0.07314 0.105 2.63(0.105) 

Midpoint -0.12267 0.88455 0.07314 0.0935 2.81(0.0937) 
Mean -0.12994 0.87814 0.07313 0.0756 3.15(0.0758) 

25%Exact Left-point -0.11940 0.8846 0.07314 0.103 2.66(0.0103) 
Midpoint -0.12502 0.88248 0.07312 0.0873 2.92(0.0876) 

Mean -0.13581 0.87301 0.07312 0.0633 3.44(0.0635) 
50%Exact Left-point -0.12315 0.88413 0.07314 0.0922 2.83(0.0925) 

Midpoint -0.12974 0.87833 0.07313 0.076 3.14(0.0763) 
Mean -0.13331 0.87520 0.07314 0.0683 3.32(0.0686) 

75%Exact Left-point -0.12869 0.87924 0.07314 0.0785 3.09(0.0787) 
Midpoint -0.13254 0.87587 0.07312 0.0699 3.28(0.0701) 

Mean -0.13351 0.87502 0.07312 0.0679 3.33(0.0681) 
 
 
 
 
Table 4.3: The result from Cox Model based on simulation sets for social status 

variable. 

 Imputation Coefficient  Exp(Coef)  SE  P-value  LRT*  
0%Exact Left-point -0.2602 0.7709 0.0742 0.000453 12.29(0.00046) 

Midpoint -0.26309 0.7709 0.0742 0.000453 12.75(0.00039) 
Mean -0.27289 0.76118 0.07418 0.000453 13.52(0.00024) 

25%Exact Left-point -0.26225    0.76932   0.07422 0.00041 12.47(0.00041) 
Midpoint -0.26077 0.77046 0.07418 0.000439 12.35(0.00044) 
Mean -0.26685 0.76579 0.07418 0.00321 12.93(0.00032) 

50%Exact Left-point -0.2602 0.7709 0.00742 0.000453 12.29(0.00046) 
Midpoint -0.25682 0.77350 0.07417 0.000535 11.98(0.00054) 
Mean -0.26027 0.77084 0.07416 0.000449 12.31(0.00045) 

75%Exact Left-point -0.2612 0.7701 0.0742 0.00043 12.39(0.00048) 
Midpoint -0.25895 0.77186 0.07417 0.000481 12.18(0.00048) 
Mean -0.26071 0.77050 0.07418 0.00044 12.34(0.00044) 

 

 

Secondly, to generate the data for the variable social status (marriage and 

single) we used the mean and standard deviation as -0.2601 and 0.07417 based on 

different percentage of exact observation (0%, 25%, 50%, and 75% ) in the PIC data.  

For the partly interval censored data. Figures 4.17, 4.18, 4.19 and 4.20 show 

the results obtained based on our model by left point with different percentages of 

exact observations. These results are almost similar as in one obtained by left point 
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for variable age. However, the left point imputation technique shows better results 

when we have more exact in case of 25%, 50% and 75% compared to 0% especially 

after 100 months. The single group have loner survival compare to marriage group 

which indicate that the single group are more crime than marriage group.  

Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27 and 4.28 show the results 

obtained based on our model by mean and median imputations, respectively. These 

results are almost similar as in the one obtained by exact data except the one obtained 

by left point with exact 0% and 25%. Also, as we found in the left point, the single 

group showed that have more crime compare to marriage group. However, the mean, 

median and left imputations showed significant results with respect to likelihood ratio 

test and their P-value as shown in Table 4.3. 

This result indicate that the Cox model can be easy implemented to PIC social 

data sets via simple imputations techniques. 

 

 
Figure 4.17: Estimated survival function obtained by left point with 0% exact data for 

social status variable (married and single) 
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Figure 4.18: Estimated survival function obtained by left point with 25% exact data 

for social status variable (married and single) 

 

 

 
Figure 4.19: Estimated survival function obtained by left point with 50% exact data 

for social status variable (married and single) 
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Figure 4.20: Estimated survival function obtained by left point with 75% exact data 

for social status variable (married and single) 

 
 

 

 

 
Figure 4.21: Estimated survival function obtained by mean point with 0% exact data 

for social status variable (married and single) 
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Figure 4.22: Estimated survival function obtained by mean point with 25% exact data 

for social status variable (married and single) 

 

 
Figure 4.23: Estimated survival function obtained by mean point with 50% exact data 

for social status variable (married and single) 
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Figure 4.24: Estimated survival function obtained by mean point with 75% exact data 

for social status variable (married and single) 

 

 

 
Figure 4.25: Estimated survival function obtained by median point with 0% exact data 

for social status variable (married and single) 
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Figure 4.26: Estimated survival function obtained by median point with 25% exact 

data for social status variable (married and single) 

 

 

 

 
Figure 4.27: Estimated survival function obtained by median point with 50% exact 

data for social status variable (married and single) 



  

54 

 

 
 
 
 

 
Figure 4.28: Estimated survival function obtained by median point with 75% exact 

data for social status variable (married and single) 

 

 

Table 4.4: The result from Cox Model based on simulation sets for nationality 
variable 

 
 

 

Imputation Coefficient  Exp(Coef)  SE  P-value  LRT*  

0%Exact Left-point -0.16212 0.85034 0.07282 0.0260 4.95(0.02607) 
Midpoint -0.16175 0.85065 0.07282 0.0263 4.93(0.02641) 
Mean -0.17063 0.84313 0.07296 0.0194 5.46(0.0194) 

25%Exact Left-point -0.16733 0.84592 0.07283 0.0216 5.27(0.02165) 
Midpoint -0.17175 0.84219 0.07284 0.0184 5.55(0.0184) 
Mean -0.1773 0.8375 0.0729 0.015 5.91(0.01507) 

50%Exact Left-point -0.16853 0.84491 0.07282 0.0206 5.35(0.01533) 
Midpoint -0.17493 0.83951 0.07284 0.0163 5.76(0.01638) 
Mean -0.17679 0.83795 0.07288 0.0153 5.88(0.01533) 

75%Exact Left-point -0.17536 0.83916 0.07284 0.0161 5.79(0.01613) 
Midpoint -0.18028 0.83504 0.07286 0.0134 6.11(0.01341) 
Mean -0.17922 0.83592 0.07288 0.0139 6.04(0.01398) 

 

 

Thirdly, for the covariate nationality (Gulf and others) we generate the data 
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based on the mean and standard deviation as -0.1785 and 0.07285 via the exact 

observation with 0%, 25%, 50%, and 75% in the PIC data.  

Figures 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40 

showed the result of the estimation of survival function obtained by Cox proportional 

hazard model (exact observation-Cox) compared and imputation techniques that is; 

left point, mean, and median. The Figures look almost similar in case of the one 

obtained by mean and median, but little difference compared with one obtained by left 

point. 

Based on Figures above mentioned, there is little difference in survival 

function between the two types of failures (Gulf and others). However, the mean and 

median are better estimate of the survival function based on the similarity in the graph 

and likelihood ratio with their P-value (Table 4.4). Based on the ratio between Gulf 

and others the left imputation showed to be better in term of the P-value.  

The findings above-mentioned correspond to exactly observation with the 

findings obtained by Cox’s model on the same data set. Their findings showed the 

estimates of the survival function to be very similar, with the survival function that 

obtained mean and median imputation techniques. On other hand, the left point 

showed different results compare with exact data for all different percentages from the 

exact data based on PIC.  

Based on the two types of failures the Gulf and others, their results look 

similar but there is slightly different in the begging from 10 to 90 months and also 

from 95 to 325 months, but lately the Gulf’s look have longer survival compare to 

others, which indicate that the Gulfs may stayed longer in prison compared to others. 
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Figure 4.29: Estimated survival function obtained by left point with 0% exact data for 

nationality covariate (Gulf and others) 

 

 
Figure 4.30: Estimated survival function obtained by left point with 25% exact data 

for nationality covariate (Gulf and others) 
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Figure 4.31: Estimated survival function obtained by left point with 50% exact data 

for nationality covariate (Gulf and others) 

 

 
Figure 4.32: Estimated survival function obtained by left point with 75% exact data 

for nationality covariate (Gulf and others) 
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Figure 4.33: Estimated survival function obtained by mean point with 0% exact data  

for nationality covariate (Gulf and others) 

 

 
Figure 4.34: Estimated survival function obtained by mean point with 25% exact data 

for nationality covariate (Gulf and others) 
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Figure 4.35: Estimated survival function obtained by mean point with 50% exact data 

for nationality covariate (Gulf and others) 

 

 

 
Figure 4.36: Estimated survival function obtained by mean point with 75% exact data 

for nationality covariate (Gulf and others) 
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Figure 4.37: Estimated survival function obtained by median point with 0% exact data 

for nationality covariate (Gulf and others) 

 

 
Figure 4.38: Estimated survival function obtained by median point with 25% exact 

data for nationality covariate (Gulf and others) 
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Figure 4.39: Estimated survival function obtained by median point with 50% exact 

data for nationality covariate (Gulf and others) 

 

 
Figure 4.40: Estimated survival function obtained by median point with 75% exact 

data for nationality covariate (Gulf and others) 

 

 

In summary, we fit the simulation data based on the Cox model for the two 

failure rates for different covariates that is age, social status, and nationality (we don’t 
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used gender as one of covariates due to the only 5% of the original data set from 

female). The Figures 4.1 to 4.40 showed the failure time against the survival function 

for the two types of failures rates obtained by exact observation Cox compare to the 

one obtained by imputation techniques that is; left point, mean point and median. In 

all the figures the survival function curve fell between the two confident intervals, and 

also, these Figures substantiate the non-significant effect of the two failures of rates. 

Although there are small differences between the two failures rates, especially to the 

one obtained by left imputations. Clearly, the rest of the Figures showed very similar 

predicted of survival function patterns. However, the likelihood ratio test shows 

significant results in our imputation techniques which indicates that these techniques 

can easy to be use for social data set as well as simulation data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

63 

 

CHAPTER 5: CONCLUSION AND SUGGESTIONS FOR FURTHER 

RESEARCH 

This chapter present the conclusion for which summarizes the results obtained 

in the previous chapters, and suggestions for future studies are presented later in the 

second section. 

5.1 CONCLUSION 

The primary purpose of the study in this thesis is to look into the study of the 

Cox proportional hazard regression model based on imputation techniques for prison 

PIC data. This method will be compared for the different imputation techniques with 

different percentages of exact data based on simulation study as well as the covariates 

in the model. In additional to that, left, mean, and median imputations based on the 

Cox's PHR approach utilizing the estimate of the survival function. 

In this thesis, the maximum likelihood estimation based on Newton-Raphson 

method was used to obtain the survival function estimates, and comparisons were 

made with existing one under the assumption of Cox’s proportional hazards 

regression model (chapter three). 

The partly interval censored for prison data and simulation data was found 

preferable compared to interval censored data (0% exact), because the likelihood for 

PIC data for Cox’s model has a much simpler form than the likelihood corresponding 

to the Cox regression hazard model with censored data. Moreover, the maximum 

likelihood estimates with Newton-Raphson does not always require the inversion of 

large matrices of large values. Furthermore, the other methods (such as EM 

algorithm) can become overwhelming when the number of subjects is large, and get 

worse when there are multiple random coefficients for each subject, this result it 

similar to the one founded by Zyoud et al., (2016).  
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To analyze survival data, based on imputation techniques with partly interval 

censored data, at least one failure rate must be present. An example of this is failure 

rates for the marriage & single (social status), Gulf & others (nationality), male & 

female (gender), 30 years or older & younger than 30 years (age) data, which was 

used in this thesis. In this data sets two failure rates were identified that is failure rate 

30 years or older and younger than 30 years for example when age is used as 

covariate. For simulation data, the failure times were generated based on the prison 

failure data set. According to the survival study, we should have one of the failures to 

be at least longer survival compare to other failure, so in a case of social status for 

example, the study found that the single and marriage are similar at the begging of the 

survival curve. However, later we conform that the single failure has loner survival 

which indicate that single is more active in crime and stay loner at prison compare to 

marriage. Moreover, the survival method used in this thesis was found to be 

acceptable and easy to implement for partly interval censored data based on 

application of social data set.  

Based on chapter Four, the left point, mean point and median point 

imputations based on Cox PHRM are discussed. Data used to these methods need be 

modified (depending on data characteristics and the researcher’s needs) as PIC and 

interval data. In comparison between the imputation techniques, the median point & 

mean point found to be reasonable in term of survival function estimation, P-value 

and likelihood ratio test (LRT).    

Survival function and LRT with their P-value for the two type of failure rates 

were calculated from the prison data set and simulation data using full iteration of 

Newton-Raphson. It was discovered that the censored observations from simulation 

have influence on the model and should be studied and taken account of for further 
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research. Nonparametric model shows better result and can easy implement base on 

partly interval censored data via the imputation techniques compared with interval 

censored. 

Finally, R software were used as procedures to obtain the results. As explained 

in earlier chapters in this thesis, R software is capable of doing calculation involving 

large matrix sizes. However, the program codes were built using R software for our 

model via the imputation techniques as showed in appendix A and B.  

5.2  SUGGESTIONS FOR FURTHER RESEARCH 

The results obtained from simulation data and the real data set in this thesis 

showed that simple imputation methods via proportional hazard regression model is 

easy to implement and preferable. Likewise, the results showed that the mean and 

median is better than left imputation in the computation of the estimate of the survival 

function measures. However, more work needs to be done for left point imputation 

and others imputation methods such as random, midpoint and multiple imputation as 

well as different lengths of interval. One of the most obvious is to try the procedure of 

a Markov Chain Monte Carlo EM algorithm so as to achieve more precise and 

unbiased estimates. 

The data used in this thesis contain only four variables as age, gender, social 

status and nationality. More variables are required such as education level, family 

status, psychology status, and previous crime. 
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